
2k
W
I N
E

WIEN2k
An Augmented Plane Wave Plus Local Orbitals Program

for Calculating Crystal Properties

User’s Guide, November 2001

Peter Blaha
Karlheinz Schwarz

Georg Madsen
Dieter Kvasnicka

Joachim Luitz

Vienna University of Technology
Inst. of Physical and Theoretical Chemistry

Getreidemarkt 9/156, A-1060 Vienna/Austria

Peter Blaha, Karlheinz Schwarz, Georg K. H. Madsen, Dieter Kvasnicka, Joachim Luitz:
WIEN2k
An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties

revised edition November 2001

Univ. Prof. Dr. Karlheinz Schwarz
Techn. Universität Wien
Institut für Physikalische und Theoretische Chemie
Getreidemarkt 9/156
A-1060 Wien/Austria
ISBN 3-9501031-1-2

ISBN 3-9501031-1-2

Contents

1 Introduction 1

I Introduction to the WIEN2k package 5

2 Basic concepts 7

2.1 Density Functional Theory . 7

2.2 The APW Methods . 8

2.2.1 The LAPW Method . 8

2.2.2 The APW+lo Method . 9

2.2.3 General considerations . 10

3 Quick Start 13

3.1 Naming conventions . 13

3.2 Starting the server . 14

3.3 Connecting to the w2web server . 15

3.4 Creating a new session . 15

3.5 Creating a new case . 15

3.6 Creating the struct file . 15

3.7 Initialization . 19

3.8 The SCF calculation . 21

3.9 The case.scf file . 22

3.10 Saving a calculation . 22

3.11 Calculating properties . 22

3.11.1 Electron density plots . 22

3.11.2 Density of States (DOS) . 26

3.11.3 X-ray spectra . 28

3.11.4 Bandstructure . 28

3.11.5 Bandstructure with band character plotting 29

3.11.6 Volume Optimization . 30

3.12 Setting up a new case . 31

3.12.1 Manual setup . 31

3.12.2 Setting up a new case using w2web . 31

3

II Detailed description of the files and programs of the WIEN2k package 33

4 Files and Program Flow 35

4.1 Flow of input and output files . 35

4.2 Input/Output files . 39

4.3 The case.struct.file . 40

4.4 The case.scf file . 43

4.5 Flow of programs . 44

4.5.1 Core, semi-core and valence states . 46

4.5.2 Spin-polarized calculation . 46

4.5.3 Fixed-spin-moment (FSM) calculations . 47

4.5.4 Antiferromagnetic (AFM) calculations . 47

4.5.5 Spin-orbit interaction . 47

5 Shell scripts 49

5.1 Job control . 49

5.1.1 Main execution script (x lapw) . 49

5.1.2 Job control for initialization (init lapw) . 50

5.1.3 Job control for iteration (run lapw or runsp lapw) 50

5.2 Utility scripts . 52

5.2.1 Save a calculation (save lapw) . 52

5.2.2 Restoring a calculation (restore lapw) . 52

5.2.3 Remove unnecessary files (clean lapw) . 53

5.2.4 Generate case.inst (instgen lapw) . 53

5.2.5 scfmonitor lapw . 53

5.2.6 Check parallel execution (testpara lapw) . 53

5.2.7 Check parallel execution of lapw1 (testpara1 lapw) 53

5.2.8 Check parallel execution of lapw2 (testpara2 lapw) 54

5.2.9 grepline lapw . 54

5.2.10 initso lapw . 54

5.2.11 oldvec2vec lapw . 54

5.3 Structure optimization . 54

5.3.1 Lattice parameters (Volume or c/a) . 54

5.3.2 Minimization of internal parameters (min lapw) 55

5.4 Parallel Execution . 56

5.4.1 k-Point Parallelization . 56

5.4.2 Fine grained parallelization . 57

5.4.3 How to use WIEN2k as a parallel program . 57

5.4.4 The .machines file . 57

5.4.5 How the list of k-points is split . 59

5.4.6 Flow chart of the parallel scripts . 59

5.4.7 On the fine grained parallelization . 59

5.5 Getting on-line help . 61

5.6 Interface scripts . 61

5.6.1 eplot lapw . 61

5.6.2 dosplot lapw . 62

5.6.3 specplot lapw . 62

5.6.4 rhoplot lapw . 62

5.6.5 opticplot lapw . 62

6 Initialization 63

6.1 NN . 63

6.1.1 Execution . 63

6.2 SGROUP . 64

6.2.1 Execution . 64

6.3 SYMMETRY . 64

6.3.1 Execution . 64

6.4 LSTART . 65

6.4.1 Execution . 65

6.4.2 Dimensioning parameters . 65

6.4.3 Input . 65

6.5 KGEN . 67

6.5.1 Execution . 67

6.5.2 Dimensioning parameters . 67

6.6 DSTART . 67

6.6.1 Execution . 68

6.6.2 Dimensioning parameters . 68

7 SCF cycle 69

7.1 LAPW0 . 69

7.1.1 Execution . 70

7.1.2 Dimensioning parameters . 70

7.1.3 Input . 70

7.2 LAPW1 . 71

7.2.1 Execution . 72

7.2.2 Dimensioning parameters . 72

7.2.3 Input . 73

7.3 LAPWSO . 75

7.3.1 Execution . 76

7.3.2 Dimensioning parameters . 76

7.3.3 Input . 76

7.4 LAPW2 . 77

7.4.1 Execution . 78

7.4.2 Dimensioning parameters . 78

7.4.3 Input . 78

7.5 SUMPARA . 81

7.5.1 Execution . 81

7.5.2 Dimensioning parameters . 81

7.6 LAPWDM . 81

7.6.1 Execution . 82

7.6.2 Dimensioning parameters . 82

7.6.3 Input . 82

7.7 ORB . 83

7.7.1 Execution . 84

7.7.2 Dimensioning parameters . 84

7.7.3 Input . 84

7.8 LCORE . 86

7.8.1 Execution . 87

7.8.2 Dimensioning parameters . 87

7.8.3 Input . 87

7.9 MIXER . 88

7.9.1 Execution . 88

7.9.2 Dimensioning parameters . 88

7.9.3 Input . 89

8 Analysis, Properties and Optimization 91

8.1 TETRA . 91

8.1.1 Execution . 92

8.1.2 Dimensioning parameters . 92

8.1.3 Input . 92

8.2 QTL . 93

8.2.1 Execution . 93

8.2.2 Dimensioning parameters . 94

8.2.3 Input . 94

8.3 SPAGHETTI . 95

8.3.1 Execution . 95

8.3.2 Input . 95

8.4 IRREP . 96

8.4.1 Execution . 97

8.4.2 Dimensioning parameters . 97

8.5 LAPW3 . 97

8.5.1 Execution . 97

8.5.2 Dimensioning parameters . 98

8.6 LAPW5 . 98

8.6.1 Execution . 98

8.6.2 Dimensioning parameters . 98

8.6.3 Input . 99

8.7 AIM . 100

8.7.1 Execution . 101

8.7.2 Dimensioning parameters . 101

8.7.3 Input . 101

8.8 LAPW7 . 103

8.8.1 Execution . 104

8.8.2 Dimensioning parameters . 104

8.8.3 Input . 105

8.9 FILTVEC . 107

8.9.1 Execution . 107

8.9.2 Dimensioning parameters . 108

8.9.3 Input . 108

8.10 XSPEC . 109

8.10.1 Execution . 109

8.10.2 Dimensioning parameters . 110

8.10.3 Input . 110

8.11 ELNES . 112

8.11.1 Execution . 113

8.11.2 Dimensioning parameters . 113

8.11.3 Input . 114

8.12 OPTIMIZE . 116

8.12.1 Execution . 116

8.12.2 Input . 116

8.13 ELAST . 116

8.13.1 Execution . 117

8.14 MINI . 117

8.14.1 Execution . 117

8.14.2 Dimensioning parameters . 117

8.14.3 Input . 118

8.15 OPTIC . 119

8.15.1 Execution . 120

8.15.2 Dimensioning parameters . 120

8.15.3 Input . 120

8.16 JOINT . 121

8.16.1 Execution . 121

8.16.2 Dimensioning parameters . 121

8.16.3 Input . 122

8.17 KRAM . 123

8.17.1 Execution . 123

8.17.2 Dimensioning parameters . 123

8.17.3 Input . 123

8.18 FSGEN . 124

9 Utility Programs 127

9.1 afminput . 127

9.1.1 Execution . 127

9.1.2 Dimensioning parameters . 127

9.2 clmcopy . 128

9.2.1 Execution . 128

9.2.2 Dimensioning parameters . 128

9.2.3 Input . 128

9.3 reformat . 129

9.4 hex2rhomb and rhomb in5 . 129

9.5 eosfit . 130

9.6 spacegroup . 130

9.7 analyse . 130

9.8 StructGenTM of w2web . 131

9.9 Visualization . 131

9.9.1 BALSAC . 131

9.9.2 XCrysDen . 131

10 Examples 133

10.1 TiC . 133

10.2 FCC Nickel . 133

10.3 Rutile . 134

III Installation of the WIEN2k package and Dimensioning of programs 137

11 Installation and Dimensioning 139

11.1 Requirements . 139

11.2 Installation of WIEN2k . 140

11.2.1 Expanding the WIEN2k distribution . 140

11.2.2 Site configuration for WIEN2k . 141

11.2.3 User configuration . 142

11.2.4 Performance and special considerations . 142

11.2.5 Global dimensioning parameters . 143

11.3 w2web . 143

11.3.1 General issues . 143

11.3.2 How does w2web work? . 143

11.3.3 w2web-files in you home directory . 144

11.3.4 The password file conf/w2web.users . 144

11.3.5 Using the https-protocol with w2web . 144

11.4 Environment Variables . 144

12 Trouble shooting 145

12.1 Ghost bands . 146

13 References 149

IV Appendix 153

A Local rotation matrices 155

A.1 Rutile (TiO2) . 156

A.2 Si Γ-phonon . 156

A.3 Trigonal Selenium . 157

B Periodic Table 159

List of Tables

4.1 Input and output files of init programs . 37

4.2 Input and output files of utility programs . 38

4.3 Input and output files of main programs in an SCF cycle 39

4.4 Lattice type, description and bravais matrix used in WIEN2k 41

6.4 Relativistic quantum numbers . 67

7.26 LM combinations of “Cubic groups” (3‖(111)) direction, requires “positive atomic
index” in case.struct. Terms that should be combined (Kara and Kurki-Suonio 81)
must follow one another. 80

7.27 LM combination and local coordinate system of “non-cubic groups” (requires “neg-
ative atomic index” in case.struct) . 80

8.53 Quantum numbers of the core state involved in the x-ray spectra 111

11

List of Figures

2.1 Partitioning of the unit cell into atomic spheres (I) and an interstitial region (II) . . . 8

3.1 TiC in the sodium chloride structure. This plot was generated using BALSAC (see
9.9.1). Interface programs between WIEN2k and BALSAC are available. 14

3.2 Startup screen of w2web . 16

3.3 Main window of w2web . 17

3.4 StructGenTM of w2web . 18

3.5 List of input files . 21

3.6 Task “Electron Density Plots” . 23

3.7 Electron density of TiC in [110] plane . 25

3.8 TiC: total DOS . 27

3.9 TiC: C partial s-DOS . 27

3.10 TiC: C partial p-DOS . 27

3.11 TiC: Ti partial d-DOS . 27

3.12 TiC: Ti partial eg-DOS . 27

3.13 TiC: Ti partial t2g-DOS . 27

3.14 Ti LIII spectrum of TiC . 28

3.15 Bandstructure of TiC . 29

3.16 Bandstructure of TiC, showing t2g-character bands of Ti in character plotting mode . 30

3.17 Energy vs. volume curve for TiC . 30

4.1 Data flow during a SCF cycle (programX.def, case.struct, case.inX, case.outputX and
optional files are omitted) . 36

4.2 Program flow in WIEN2k . 45

5.1 Flow chart of lapw1para . 60

5.2 Flow chart of lapw2para . 60

7.1 Schematic dependence of DOS and ul(r, El) on the energy 75

9.1 3D electron density in TiC generated with XCrysDen 132

13

Licence conditions of WIEN2k
P. Blaha, K. Schwarz, G. K. H. Madsen, D. Kvasnicka and J. Luitz

Prof. Dr. Karlheinz Schwarz
Vienna University of Technology
Inst. of Physical and Theoretical Chemistry
A-1060 Vienna, Getreidemarkt 9/156
AUSTRIA
Fax: +43-1-58801-15698

DEFINITIONS:

In the following, the term “the authors”, refers to P. Blaha, K. Schwarz, G. K. H. Madsen, D. Kvas-
nicka and J. Luitz at the above address. “Program” shall mean that copyrighted APW+LO code
(in source and object form) comprising the computer programs known as WIEN2k or the graphical
user interface w2web.

MANDATORY TERMS AND CONDITIONS:

I will adhere to the following conditions upon receipt of the program:

1. All title, ownership and rights to the program or to copies of it remain with the authors,
irrespective of the ownership of the media on which the program resides.

2. I will not supply a copy of the code to anyone for any reason whatsoever. This in no way
limits my making copies of the code for backup purposes, or for running on more than one
computer system at my institution (it is a site license for the registered group). I will refer
any request for copies of the program to the authors.

3. I will not incorporate any part of WIEN2k or w2web into any other program system, without
prior written permission of the authors.

4. I will keep intact all copyright notices.
5. I understand that the authors supply WIEN2k and w2web and its documentation on an “as

is” basis without any warranty, and thus with no additional responsibility or liability. I agree
to report any difficulties encountered in the use of WIEN2k or w2web to the authors.

6. In any publication in the scientific literature I will reference the program as follows:

P. Blaha, K. Schwarz, G. K. H. Madsen, D. Kvasnicka and J. Luitz, WIEN2k, An Aug-
mented Plane Wave + Local Orbitals Program for Calculating Crystal Properties
(Karlheinz Schwarz, Techn. Universität Wien, Austria), 2001. ISBN 3-9501031-1-2

Please enter your publications with WIEN2k on our web-page for “papers”, so that we can
easily include them in the list of WIEN-publications. In addition we like to receive a copy
(ps-, pdf-file or reprint), especially for less common journals. Please send it to the second
author, K. Schwarz.

7. It is understood that modifications of the WIEN2k or the w2web code can lead to problems
where the authors may not be able to help. Please report useful modifications or major ex-
tensions to the authors.

8. I understand that support for running the program can not be provided in general, except on
the basis of a joint project between the authors and the research partner.

ii

1 Introduction

The Linearized Augmented Plane Wave (LAPW) method has proven to be one of the most accurate
methods for the computation of the electronic structure of solids within density functional theory.
A full-potential LAPW-code for crystalline solids has been developed over a period of more than
twenty years. A first copyrighted version was called WIENand it was published by

P. Blaha, K. Schwarz, P. Sorantin, and S. B. Trickey, in
Comput. Phys. Commun. 59, 399 (1990).

In the following years significantly improved and updated UNIX versions of the original WIEN-
code were developed, which were called WIEN93, WIEN95 and WIEN97. Now a new version,
WIEN2k, is available, which is based on an alternative basis set. This allows a significant improve-
ment, especially in terms of speed, universality, user-friendliness and new features.

WIEN2k is written in FORTRAN 90 and requires a UNIX operating system since the programs are
linked together via C-shell scripts. It has been implemented successfully on the following computer
systems: Pentium systems running under Linux, IBM RS6000, HP , SGI , Compac DEC Alpha, and
SUN. It is expected to run on any modern UNIX (LINUX) system.

Hardware requirements will change from case to case (small cases with 10 atoms per unit cell can
be run on any Pentium PC with 128 Mb under Linux), but generally we recommend a powerful PC
or workstation with at least 256 Mb (better 512 Mb or more) memory and 1 Gb (better a few Gb)
of disk space. For coarse grain parallization on the k-point level, a cluster of PCs with a 100 Mb/s
network is sufficient. Faster communication is recommended for the fine grain (single k-point)
parallel version.

In order to use all options and features (such as the new graphical user interface w2web or some
of its plotting tools) the following public domain program packages in addition to a F90 compiler
must be installed:

I perl 5 or higher (for w2web only)
I emacs or another editor of your choice
I ghostscript (with jpg support)
I gnuplot (with png support)
I www-browser
I pdf-reader (acroread,...)
I MPI+SCALAPACK (on parallel computers only)

Usually these packages should be available on modern systems. If one of these packages is not
available, it can either be installed from public domain sources (see Chapt. 11) or the corresponding
configuration may be changed (e.g. using vi instead of emacs). None of the principal components
of WIEN2k requires these packages, only for advanced features or w2web they are needed.

WIEN2k has the following features that are new with respect to WIEN97:

1

2 CHAPTER 1. INTRODUCTION

I due to the new APW+lo basis set it is significantly faster (up to an order of magnitude).
Optimizations in the most time consuming parts of LAPW1 and LAPW2 have been made.

I iterative diagonalization (for cases with large matrices and few eigenvalues)
I beside the k-point parallelization (including heterogeneous workstation clusters) a fine grain

parallelization based on MPI is also available.
I A new web-based graphical user interface w2web has been developed. It does NOT require

an X-environment and thus WIEN2k can be controlled from (but not run on !) any Windows-
PC. This should particularly help the novice to get acquainted with WIEN2k but it should be
useful for the regular user as well.

I support for AFM and FSM calculations
I spin-orbit coupling, including a new p1/2-LO for higher accuracy
I wavefunction plotting
I determination of irreducible representations
I elastic constants (cubic cases only)
I Topological analysis based on Bader’s “atoms in molecules” concept
I LDA+U, orbital polarization (OP), magnetic and electric fields
I new PKZB meta-GGA functional

The development of WIEN2k was made possible by support from many sources. We try to give
credit to all who have contributed. We hope not to have forgotten anyone who made an important
contribution for the development or the improvement of the WIEN2k code. If we did, please let us
know (we apologize and will correct it). The main developers in addition to the authors are the
following groups:

I C. Ambrosch-Draxl (Univ. Graz, Austria) and her group
I U. Birkenheuer (Dresden), wave function plotting
I T. Charpin (Paris), elastic constants
I C. Först (Vienna), afminput
I P. Novák and J. Kuneš (Prague), LDA+U, SO
I C. Persson (Uppsala), irreducible representations
I M. Scheffler (Fritz Haber Inst., Berlin) and his group
I E. Sjöstedt and L Nordström (Uppsala, Sweden), APW+lo
I J. Sofo and J. Fuhr (Barriloche), Bader analysis
I B. Yanchitsky and A. Timoshevskii (Kiev), sgroup

We want to thank those WIEN97 users, who reported bugs or made suggestions and thus con-
tributed to the new version as well as persons who have made major contributions in the develop-
ment of previous versions of the code:

I R. Augustyn (Vienna), U. Birkenheuer (Munich), P. Blöchl (IBM Zürich), F. Boucher (Nantes),
A. Chizmeshsya (Arizona), P. Dufek (Vienna), H. Ebert (Munich), E. Engel (Frankfurt), H.
Enkisch (Dortmund), M. Fähnle (MPI Stuttgart), S. Kohlhammer (Stuttgart), T. Kokalj (Ljubl-
jana), H. Krimmel (Stuttgart), P. Louf (Vienna), I. Mazin (Washington), M. Nelhiebel (Vi-
enna), V. Petricek (Prague), C. Rodrigues (La Plata, Argentina), P. Schattschneider (Vienna), R.
Schmid (Frankfurt), D. Singh (Washington), H. Smolinski (Dortmund), T. Soldner (Leipzig),
P. Sorantin (Vienna), S. Trickey (Gainesville), S. Wilke (Exxon, USA), B. Winkler (Kiel)

3

This work was supported by the following institutions:

I Austrian Science Foundation (FWF-Projects P5939, P7063, P8176, SFB08-11)
I Siemens Nixdorf (WIEN93)
I IBM (WIEN)

We take this opportunity to thank for all contributions.
For suggestions or bug reports please contact the authors by email:

pblaha@theochem.tuwien.ac.at
kschwarz@theochem.tuwien.ac.at

4 CHAPTER 1. INTRODUCTION

Part I

Introduction to the WIEN2k package

5

2 The basic concepts of the present
band theory approach

2.1 The density functional theory

An efficient and accurate scheme for solving the many-electron problem of a crystal (with nuclei
at fixed positions) is the local spin density approximation (LSDA) within density functional theory
(Hohenberg and Kohn 64, Kohn and Sham 65). Therein the key quantities are the spin densities
ρσ(r) in terms of which the total energy is

Etot(ρ↑, ρ↓) = Ts(ρ↑, ρ↓) + Eee(ρ↑, ρ↓)+ ENe(ρ↑, ρ↓) + Exc(ρ↑, ρ↓) + ENN

with ENN the repulsive Coulomb energy of the fixed nuclei and the electronic contributions,
labeled conventionally as, respectively, the kinetic energy (of the non-interacting particles), the
electron-electron repulsion, nuclear-electron attraction, and exchange-correlation energies. Two
approximations comprise the LSDA, i), the assumption that Exc can be written in terms of a local
exchange-correlation energy density µxc times the total (spin-up plus spin-down) electron density
as

Exc =
∫
µxc(ρ↑, ρ↓) ∗ [ρ↑ + ρ ↓]dr (2.1)

and ii), the particular form chosen for that µxc. Several forms exist in literature, we use the most
recent and accurate fit to the Monte-Carlo simulations of Ceperly and Alder by Perdew and Wang
92. Etot has a variational equivalent with the familiar Rayleigh-Ritz principle. The most effective
way known to minimize Etot by means of the variational principle is to introduce orbitals χσik
constrained to construct the spin densities as

ρσ(r) =
∑
i,k

ρσik|χσik(r)|2 (2.2)

Here, the ρσik are occupation numbers such that 0 ≤ ρσik ≤ 1/wk, wherewk is the symmetry-required
weight of point k. Then variation of Etot gives the Kohn-Sham equations (in Ry atomic units),

[−∇2 + VNe + Vee + V σxc]χ
σ
ik(r) = εσik(r)χσik(r) (2.3)

which must be solved and thus constitute the primary computational task. This Kohn-Sham equa-
tions must be solved self-consistently in an iterative process, since finding the Kohn-Sham orbitals
requires the knowledge of the potentials which themselves depend on the (spin-) density and thus
on the orbitals again.

7

8 CHAPTER 2. BASIC CONCEPTS

Recent progress has been made going beyond the LSDA by adding gradient terms of the electron
density to the exchange-correlation energy or its corresponding potential. This has led to the gen-
eralized gradient approximation (GGA) in various parameterizations, e.g. the one by Perdew et al
92 or Perdew, Burke and Ernzerhof (PBE) 96, which is the recommended option.

A recent version called meta-GGA by Perdew et al (2000) employes for the evaluation of the
exchange-correlation energy not only the gradient of the density, but also the kinetic energy density
τ(r). Unfortunately, such schemes are not yet self-consistent.

2.2 The Full Potential APW methods

Recently, the development of the Augmented Plane Wave (APW) methods from Slater’s APW, to
LAPW and the new APW+lo was described by Schwarz et al. 2001.

2.2.1 The LAPW method

The linearized augmented plane wave (LAPW) method is among the most accurate methods for
performing electronic structure calculations for crystals. It is based on the density functional theory
for the treatment of exchange and correlation and uses e.g. the local spin density approximation
(LSDA). Several forms of LSDA potentials exist in the literature , but recent improvements using
the generalized gradient approximation (GGA) are available too (see sec. 2.1). For valence states
relativistic effects can be included either in a scalar relativistic treatment (Koelling and Harmon 77)
or with the second variational method including spin-orbit coupling (Macdonald 80, Novák 97).
Core states are treated fully relativistically (Desclaux 69).

A description of this method to linearize Slater’s old APW method (i.e. the LAPW formalism) and
further programming hints are found in many references: Andersen 73, 75, Koelling 72, Koelling
and Arbman 75, Wimmer et al. 81, Weinert 81, Weinert et al. 82, Blaha and Schwarz 83, Blaha et al.
85, Wei et al. 85, Mattheiss and Hamann 86, Jansen and Freeman 84, Schwarz and Blaha 96). An
excellent book by D. Singh (Singh 94) describes all the details of the LAPW method and is highly
recommended to the interested reader. Here only the basic ideas are summarized; details are left
to those references.

Like most “energy-band methods“, the LAPW method is a procedure for solving the Kohn-Sham
equations for the ground state density, total energy, and (Kohn-Sham) eigenvalues (energy bands)
of a many-electron system (here a crystal) by introducing a basis set which is especially adapted to
the problem.

II
I

I

Figure 2.1: Partitioning of the unit cell into atomic spheres (I) and an interstitial region (II)

This adaptation is achieved by dividing the unit cell into (I) non-overlapping atomic spheres (cen-
tered at the atomic sites) and (II) an interstitial region. In the two types of regions different basis
sets are used:

2.2. THE APW METHODS 9

1. (I) inside atomic sphere t, of radius Rt, a linear combination of radial functions times spheri-
cal harmonics Ylm(r) is used (we omit the index t when it is clear from the context)

φkn =
∑
lm

[Alm,knul(r, El) +Blm,kn u̇l(r, El)]Ylm(r̂) (2.4)

where ul(r, El) is the (at the origin) regular solution of the radial Schroedinger equation for
energy El (chosen normally at the center of the corresponding band with l-like character)
and the spherical part of the potential inside sphere t; u̇l(r, El) is the energy derivative of
ul evaluated at the same energy El. A linear combination of these two functions constitute
the linearization of the radial function; the coefficients Alm and Blm are functions of kn (see
below) determined by requiring that this basis function matches (in value and slope) each
plane wave (PW) the corresponding basis function of the interstitial region; ul and u̇l are
obtained by numerical integration of the radial Schroedinger equation on a radial mesh
inside the sphere.

2. (II) in the interstitial region a plane wave expansion is used

φkn =
1√
ω
eikn·r (2.5)

where kn = k + Kn; Kn are the reciprocal lattice vectors and k is the wave vector inside
the first Brillouin zone. Each plane wave is augmented by an atomic-like function in every
atomic sphere.

The solutions to the Kohn-Sham equations are expanded in this combined basis set of LAPW’s
according to the linear variation method

ψk =
∑
n

cnφkn (2.6)

and the coefficients cn are determined by the Rayleigh-Ritz variational principle. The convergence
of this basis set is controlled by a cutoff parameter RmtKmax = 6 - 9, where Rmt is the smallest
atomic sphere radius in the unit cell and Kmax is the magnitude of the largest K vector in equation
(2.6).

In order to improve upon the linearization (i.e. to increase the flexibility of the basis) and to make
possible a consistent treatment of semicore and valence states in one energy window (to ensure
orthogonality) additional (kn independent) basis functions can be added. They are called “local
orbitals (LO)“ (Singh 91) and consist of a linear combination of 2 radial functions at 2 different
energies (e.g. at the 3s and 4s energy) and one energy derivative (at one of these energies):

φLOlm = [Almul(r, E1,l) +Blmu̇l(r, E1,l) + Clmul(r, E2,l)]Ylm(r̂) (2.7)

The coefficients Alm, Blm and Clm are determined by the requirements that φLO should be normal-
ized and has zero value and slope at the sphere boundary.

2.2.2 The APW+lo method

Sjöstedt, Nordström and Singh (2000) have shown that the standard LAPW method with the ad-
ditional constraint on the PWs of matching in value AND slope to the solution inside the sphere
is not the most efficient way to linearize Slater’s APW method. It can be made much more effi-
cient when one uses the standard APW basis, but of course with ul(r, El) at a fixed energy El in
order to keep the linear eigenvalue problem. One then adds a new local orbital (lo) to have enough
variational flexibility in the radial basisfunctions:

φkn =
∑
lm

[Alm,knul(r, El)]Ylm(r̂) (2.8)

10 CHAPTER 2. BASIC CONCEPTS

φlolm = [Almul(r, E1,l) +Blmu̇l(r, E1,l)]Ylm(r̂) (2.9)

This new lo (denoted with lower case to distinguish it from the LO given in equ. 2.7) looks almost
like the old “LAPW”-basis set, but here the Alm and Blm do not depend on kn and are determined
by the requirement that the lo is zero at the sphere boundary and normalized.

Thus we construct basis functions that have “kinks” at the sphere boundary, which makes it nec-
essary to include surface terms in the kinetic energy part of the Hamiltonian. Note, however, that
the total wavefunction is of course smooth and differentiable.

As shown by Madsen et al. (2001) this new scheme converges practically to identical results as the
LAPW method, but allows to reduce “RKmax” by about one, leading to significantly smaller basis
sets (up to 50 %) and thus the corresponding computational time is drastically reduced (up to an
order of magnitude). Within one calculation a mixed “LAPW and APW+lo” basis can be used for
different atoms and even different l-values for the same atom (Madsen et al. 2001). In general one
describes by APW+lo those orbitals which converge most slowly with the number of PWs (such
as TM 3d states) or the atoms with a small sphere size, but the rest with ordinary LAPWs. One
can also add a second “lo” at a different energy so that both, semicore and valence states, can be
described simultaneously.

2.2.3 General considerations

In its general form the LAPW (APW+lo) method expands the potential in the following form

V (r) =

∑
LM

VLM (r)YLM (r̂) inside sphere∑
K

VKe
iK·r outside sphere (2.10)

and the charge densities analogously. Thus no shape approximations are made, a procedure fre-
quently called a “full-potential“ method.

The “muffin-tin“ approximation used in early band calculations corresponds to retaining only the
l = 0 component in the first expression of equ. 2.10 and only the K = 0 component in the second.
This (much older) procedure corresponds to taking the spherical average inside the spheres and
the volume average in the interstitial region.

The total energy is computed according to Weinert et al. 82.

Rydberg atomic units are used except internally in the atomic-like programs (LSTART and LCORE)
or in subroutine outwin (LAPW1, LAPW2), where Hartree units are used. The output is always
given in Rydberg units.

The forces at the atoms are calculated according to Yu et al (91). For the implementation of this
formalism in WIEN see Kohler et al (96) and Madsen et al. 2001. An alternative formulation by
Soler and Williams (89) has also been tested and found to be equivalent, both in computationally
efficiency and numerical accuracy (Krimmel et al 94).

The Fermi energy and the weights of each band state can be calculated using a modified tetrahe-
dron method (Blöchl et al. 94), a Gaussian or a temperature broadening scheme.

Spin-orbit interactions can be considered via a second variational step using the scalar-relativistic
eigenfunctions as basis (see Macdonald 80, Singh 94 and Novák 97). In order to overcome the prob-
lems due to the missing p1/2 radial basis function in the scalar-relativistic basis (which corresponds
to p3/2), we have recently extended the standard LAPW basis by an additional “p1/2-local orbital”,
i.e. a LO with a p1/2 basis function, which is added in the second-variational SO calculation (Kuneš
et al. 2001).

2.2. THE APW METHODS 11

It is well known that for localized electrons (like the 4f states in lanthanides or 3d states in some
TM-oxides) the LDA (GGA) method is not accurate enough for a proper description. Thus we have
implemented various forms of the LDA+U method as well as the “Orbital polarization method”
(OP) (see Novák 2001 and references therein).

One can also consider interactions with an external magnetic (see Novák 2001) or electric field (via
a supercell approach, see Stahn et al. 2000).

PROPERTIES:

The density of states (DOS) can be calculated using the modified tetrahedron method of Blöchl et
al. 94.

X-ray absorption and emission spectra are determined using Fermi’s golden rule and dipole matrix
elements (between a core and valence or conduction band state respectively). (Neckel et al. 75,
Schwarz et al 79,80)

X-ray structure factors are obtained by Fourier Transformation of the charge density.

Optical properties are obtained using the “Joint density of states” modified with the respective
dipole matrix elements according to Ambrosch et al. 95, Abt et al. 94, Abt 97. A Kramers-Kronig
transformation is also possible.

An analysis of the electron density according to Bader’s “atoms in molecules” theory can be made
using a program by J. Sofo and J. Fuhr (2001)

12 CHAPTER 2. BASIC CONCEPTS

3 Quick Start

Contents

3.1 Naming conventions . 13
3.2 Starting the server . 14
3.3 Connecting to the w2web server . 15
3.4 Creating a new session . 15
3.5 Creating a new case . 15
3.6 Creating the struct file . 15
3.7 Initialization . 19
3.8 The SCF calculation . 21
3.9 The case.scf file . 22
3.10 Saving a calculation . 22
3.11 Calculating properties . 22
3.12 Setting up a new case . 31

We assume that WIEN2k is properly installed and configured for your site and that you ran user-
config lapw to adjust your path and environment. (For a detailed description of the installation
see chapter 11.

This chapter is intended to guide the novice user in handling the program package. We use the
example of TiC in the sodium chloride structure to show which steps are necessary to initialize
a calculation and run a self consistent field cycle. We also demonstrate how to calculate various
physical properties from these SCF data. Along the way we will give all important information in
a very abridged form, so that the novice user is not flooded with information, and the experienced
user will be directed to more complete information.

In this chapter we will also show, how the new graphical user interface w2web can be utilized to
setup and run the calculations.

3.1 Naming conventions

Before we begin with our introductory example, we describe the naming conventions, to which we
will adhere throughout this user’s guide.

On UNIX systems the files are specified by case.type and it is required that all files reside in a
subdirectory ./case . Here and in the following sections and in the shell scripts which run the
package themselves, we follow a simple, systematic convention for file labeling.

For the general discussion (when no specific crystal is involved), we use case , while for a specific
case, e.g. TiC, we use the following notation:

13

14 CHAPTER 3. QUICK START

B
A

L
SA

C
 p

lo
t

Figure 3.1: TiC in the sodium chloride structure. This plot was generated using BALSAC (see 9.9.1).
Interface programs between WIEN2k and BALSAC are available.

case=TiC

The filetype “type ” always describes the content of the file (e.g.,

type=inm is inPUT for mIXER).

Thus the input to MIXER for TiC is found in the file

TiC.inm

which should be in subdirectory ./TiC .

3.2 Starting the w2web server

Start the user interface w2web on the computer where you want to execute WIEN2k(you may have
to telnet, ssh,.. to this machine) with the command

w2web [-p xxxx]

If the default port (7890) used to serve the interface is already in use by some other process,
you will get the error message w2web failed to bind port 7890 - port already in
use! . Then you will have to choose a different port number (between 1024 and 65536) . Please
remember this port number, you need it when connecting to the w2web server.

Note: Only user root can specify port numbers below 1024!

At the first startup of this server, you will also be asked to setup a username and password, which
is required to connect to this server.

3.3. CONNECTING TO THE W2WEB SERVER 15

3.3 Connecting to the w2web server

Use your favorite WWW-browser to connect to w2web, specifying the correct portnumber, e.g.

netscape http://hostname where w2web runs:7890

(If you do not remember the portnumber, you can find it by using “ps -ef | grep w2web” on the
computer where w2web is running.) You should see a screen as in Fig.3.2.

3.4 Creating a new session

The user interface w2web uses sessions to distinguish between different working environments
and to quickly change between different calculations. First you have to create a new session (or
select an old one). Enter “TiC” and click the “Create” button.
Note: Creating a session does not automatically create a new directory!

You will be placed in your home directory if no working directory was designated to this session
previously (or if the directory does not exist any more).

3.5 Creating a new case-directory

Using “Session Mgmt. o change directory” you can select an existing directory or create a new one.
For this example create a new directory lapw and than TiC using the “Create” button. After the
directory has been created, you have to click on select current directory to assign this newly created
directory to the current session.

After clicking on Click to restart session the main window of w2web will appear (Fig.3.3.

3.6 Creating the “master input“ file case.struct

To create the file TiC.struct start the struct-file generator using “Executiono StructGenTM” (see
figure 3.4).

For a new case w2web creates an empty structure template in which you can specify structural
data and calculational parameters. Later on this information is used to generate the TiC.struct
file.

As a first step fill in the data given below into the corresponding fields (white boxes):

Title TiC
Lattice F (for face centered)
a 4.328 Å(click on the Ang button before)
b 4.328 Å
c 4.328 Å
α, β, γ 90
Atom Ti, enter position (0,0,0) and RMT = 2.0.

Click “Save Structure” (Z and R0 will be updated automatically). “Continue editing” and “add
an atom”:

Atom C, enter position (.5,.5,.5) and RMT = 1.9

16 CHAPTER 3. QUICK START

Figure 3.2: Startup screen of w2web

3.6. CREATING THE STRUCT FILE 17

Figure 3.3: Main window of w2web

18 CHAPTER 3. QUICK START

Figure 3.4: StructGenTM of w2web

3.7. INITIALIZATION 19

Note: You have to click on Save Structure after every modifications you make in the white fields. Add/remove
a position/atom only if you have made no other changes before.

Usually, the value for RMT (muffin-tin radius, sphere size) would be specified once you know the
nearest neigbor distances computed in nn . In a face-centered (body-centered) spacegroup you have
to enter just one atom (not the ones in (.5,.5,0),. . .).

When you are done, exit the StructGenTM with “save file and clean up”. This will generate the
file TiC.struct (shown now in view-only mode with a different background color), which is the
master input file for all subsequent programs. This step also automatically generates the input file
for the free atom program lstart (atomic configurations) tic.inst .

When you now choose “Files o show all files”, you will see, that both files tic.struct and
tic.inst have been created.

For a detailed description of these files consult sections 4.3 and 6.4.3.

3.7 Initialization of the calculation (init lapw)

After the two basic input files have been created, initalization of the calculation is done by “Execu-
tion o initialize calc.”. This will guide you through the steps necessary to initialite the calculation.
Simply follow the steps that are highlighted in green and follow the instructions.

The initialization process is described in detail in section 5.1.2.

Alternatively you could run the script init lapw from the command line. All actions of this script
are logged in short in :log and in detail in the file case.dayfile , which can easily be accessed
by Utils. o show dayfile.

Initializing the calculation will run several steps automatically, where x is the script to start WIEN2k
programs (see section: 5.1.1).

x nn calculates the nearest neighbors up to a specified distance and thus helps to determine the
atomic sphere radii (you must specify a distance factor f, e.g. 2, and all distances up to f *
NN-dist. are calculated)

view TiC.outputnn : check for overlapping spheres, coordination numbers and nearest neighbor
distances, (e.g. in the sodium chloride structure there must 6 nearest and 12 next nearest
neighbors). Using these distances and coordinations you can check whether you put the
proper positions into your struct file or if you made a mistake. nn also checks whether
your equivalent atoms are really crystallographically equivalent and eventually writes a new
struct-file which you may or may not accept. In general, this is also the time to go back to
StructGenTM and choose proper RMT values. You can save a lot of CPU-time by changing RMT
to almost touching spheres. See Sec.4.3

x sgroup calculates the point and spacegroups for the given structure
view TiC.outputsgroup : Now you can either accept the TiC.struct file generated by sgroup

(if you want to use the spacegroup information or a different cell has been found by sgroup)
or keep your original file (default).

x symmetry generates from a raw case.struct file the space group symmetry operations, de-
termines the point group of the individual atomic sites, generates the LM expansion for the
lattice harmonics (in case.in2 st) and local rotation matrices (in case.struct st).

view TiC.outputs : check the symmetry operations (they have been written to or compared with
already available ones in TiC.struct by the program symmetry) and the point group sym-
metry of the atoms (You may compare them with the “International Tables for X-Ray Crys-
tallography“). If the output does not match your expectations from the “Tables”, you might
have made an error in specifying the positions. The TiC.struct file will be updated with

20 CHAPTER 3. QUICK START

symmetry operations, positive or negativ atomic counter (for “cubic” point group symme-
tries) and the local rotation matrix.

x lstart generates atomic densities (see section 6.4) and determines how the orbitals are treated in
the band structure calculations (i.e. as core or band states, with or without local orbitals, . . .).
You are requested to specify the desired exchange correlation potential and an energy that
separates valence from core states. For TiC select the recommended potential option “GGA
of Perdew-Burke-Ernzerhof 96” and a separation energy of -6.0 Ry.

edit TiC.outputst : check the output (did you specify a proper atomic configuration, did lstart
converge, are the core electrons confined to the atomic sphere?). Warnings for the radial
mesh can usually be neglected since it affects only the atomic total energy. lstart generates
TiC.in0 st , in1 st , in2 st , inc st and inm . For Ti it selects automatically 1s, 2s, and 2p
as core states, 3s and 3p will be treated with local orbitals together with 3d, 4s and 4p valence
states.

edit TiC.in1 st : As mentioned, the input files are generated automatically with some default val-
ues which should be a reasonable choice for most cases. Nevertheless we highly recommend
that you go through these inputs and become familiar with them. The most important param-
eter here is RKMAX, which determines the number of basis functions (size of the matrices).
Values between 5-9 (APW) and 6-10 (LAPW) are usually reasonable. You may change here
the usage of APW or LAPW (set 1 or 0 after the CONT/STOP switch), since often APW is
necessary only for orbitals more difficult to converge (3d, 4f). Here we will just change EMAX
of the energy window from 1.5 to 2.0 Ry in order to be able to calculate the unoccupied DOS to higher
energies.

edit TiC.in2 st : Here you may limit the LM expansion (for some speedup), change the value of
GMAX (in cases with small spheres (e.g. systems with H-atoms) values of 15-24 are recom-
mended) or specify a different BZ-integration method to determine the Fermi energy. For
this example you should not change anything so that you can compare your results with the
test run.

edit TiC.inm st : For “difficult to converge systems” (several atoms with localized d- or f-
electrons, magnetic systems) you should reduce the mixing factor from 0.4 to a smaller value
(e.g. 0.05). (See our faq-page on www.wien2k.at what you should do when the scf cycle
crashes). For TiC no changes are necessary.

Copy all generated inputs (from case.in ∗ st to case.in*). In cases without inversion sym-
metry the files case.in1c, in2c are produced.

x kgen generates a k-mesh in the Brillouin zone (BZ). You must specify the number of k-points
in the whole BZ (use 1000 for comparison with the provided output, a “good” calculations
needs many more). For details see section 6.5.

view TiC.klist : check the number of k-points in the irreducible wedge of the BZ (IBZ) and the
energy interval specified for the first k-point. You can now either rerun kgen (and generate
a different k-mesh) or continue.

x dstart generates a starting density for the SCF cycle by superposition of atomic densities gener-
ated in lstart . For details see section 6.6.

view TiC.outputd (check if gmax >gmin)
Now you are asked , whether or not you want to run a spin-polarized calculation (in such a case

case dstart is re-run to generate spin-densities). For TiC say No.

Initialization of a calculation (running init lapw) will create all inputs for the subsequent SCF
calculation choosing some default options and values. You can find a list of input files using “Files
o input files” (3.5).

3.8. THE SCF CALCULATION 21

Figure 3.5: List of input files

3.8 The SCF calculation

After the case has been set up, a link to “run SCF” is added, (“Run Programs o run SCF” and you
should invoke the self-consistency cycle (SCF). This runs the script run lapw with the desired
options.

The SCF cycle consists of the following steps:

LAPW0 (POTENTIAL) generates potential from density
LAPW1 (BANDS) calculates valence bands (eigenvalues and eigenvectors)
LAPW2 (RHO) computes valence densities from eigenvectors
LCORE computes core states and densities
MIXER mixes input and output densities

After selecting “run SCF” from the “Execution” menu, the SCF-window will open, and you can
now specify additional parameters. For this example we select charge convergence to 0.0001: Spec-
ify “charge” to be used as convergence criterion, and select a value of 0.0001 (-cc 0.0001).

To run the SCF cycle, click on “Run!”

Since this might take a long time for larger systems; you can specify the “Execution type” to be batch
or submit (if your system is configured with a queuing system and w2web has been properly set
up, see section 11.3).

While the calculation is running (as indicated by the status frame in the top right corner of the
window), you can monitor several quantities (see section 3.9).

Once the calculation is finished (11 iterations), view case.dayfile for timing and errors and
compare your results with the files in the provided example (TiC/case scf).

22 CHAPTER 3. QUICK START

For magnetic systems you would run a spin-polarized calculation with the script runsp lapw .
The program flow of such a calculation is described in section 4.5.2 and the script itself in section
5.1.3.

3.9 The “history“ file case.scf

During the SCF cycle the essential data of each iteration are appended to the file case.scf , in our
example TiC.scf . For an easier retrieval of certain quantities, the essential lines carry a label of
the form :LABEL: which can be used to monitor these quantities during a SCF run.

The information is retrieved using the UNIX grep command or using the “Utils. o analyze” menu.

While the SCF cycle of TiC is running try to monitor e.g. the total energy (label :ENE) or the charge
distance (label :DIS). The calculation has converged, when the convergence criterion is met for
three subsequent iterations (compare the charge distance in the example).

For a detailed description of the various labels consult section 4.4.

3.10 Saving a calculation

Before you proceed to another calculation, you should save the results of the SCF-cycle with the
save lapw command, which is also described in detail in section 5.2.1. This can also be done from
the graphical user interface by choosing the “Utils. o save lapw” menu.

Save the result to this example under the name “TiC scf ”.

You can now improve your calculation and check the convergence of the most important parame-
ters:

I increase RKMAX and GMAX in case.in1 and case.in2
I increase the k-mesh with x kgen
I choose a different exchange-correlation potential in case.in0

Then just execute another run lapw using “Execution o run SCF”.

3.11 Calculating properties

Once the SCF cycle has converged one can calculate various properties like Density of States (DOS),
band structure, Optical properties or X-ray spectra.

For the calculation of properties (which from now on will be called “Tasks”). We strongly encourage
the user to utilize the user interface, w2web. This user interface automatically supplies input file
templates and shows how to calculate the named properties on a step by step basis.

3.11.1 Electron density plots

Select “El. Dens.” from the “Tasks” menu and click on the buttons one by one (see figure 3.6):

I Edit TiC.in2 and set EMIN to -1.0 to eliminate Ti 3s and 3p semicore states
I Recalculate the valence density without 3s and 3p (x lapw2). This is only possi-

ble, when you still have a valid TiC.vector file on a tetrahedral mesh.

3.11. CALCULATING PROPERTIES 23

Figure 3.6: Task “Electron Density Plots”

24 CHAPTER 3. QUICK START

I Edit TiC.in5 choose the offered template input file. To select the (100) plane for
plotting specify the following input:

-1 -1 0 4 # origin of plot (x,y,z,denominator)
-1 3 0 4 # x-end of plot

3 -1 0 4 # y-end of plot
3 2 3 # x,y,z number of shells
100 100 # number of x and y points, ratio should be

similar to x,y lenght
RHO
ANG VAL NODEBUG
ORTHO

For a detailed description of input options consult section 8.6.3
I Calculate electron density
I Plot output (using rhoplot), after the first preview select a range zmin=0 to zmax=2
I Reset EMIN in TiC.in2 (don’t forget this, or you will run onto troubles later on!)

Compare the result with the electron density plotted in the (100) plane (see figure 3.7). The pro-
gram gnuplot (public domain) must be installed on your computer. For more advanced graphics
use your favorite plotting package or specify other options in gnuplot (see rhoplot lapw how
gnuplot is called).

3.11. CALCULATING PROPERTIES 25

Figure 3.7: Electron density of TiC in [110] plane

26 CHAPTER 3. QUICK START

3.11.2 Density of States (DOS)

Select “Density of States (DOS)” from the “Tasks” menu and click on the buttons one by one:

I Calculate partial charges (x lapw2 -qtl). (This is only possible, when you still
have a valid TiC.vector file on a tetrahedral mesh.)

I Edit TiC.int , choose the offered template input file and edit it to select: total
DOS, Ti-d, Ti-deg , Ti-dt2g , C-s and C-p-like DOS.

TiC
-0.50 0.00200 1.500 0.003 EMIN, DE, EMAX, Gauss-broadening

6 NUMBER OF DOS-CASES
0 1 tot (atom,case,description)
1 4 Ti d
1 5 Ti eg
1 6 Ti t2g
2 2 C s
2 3 C p

For a detailed description of input options consult section 8.1.3
I Calculate DOS (x tetra).
I Preview output using “dosplot”

If you want to use the supplied plotting interface dosplot to preview the results, the program
gnuplot (public domain) must be installed on your computer.

The calculated DOS can be compared with figures 3.8 to 3.13 if you select a range of -12.5 to 3.5 eV.
To calculate DOS for higher energies, you will have to increase EMAX in case.in1 and rerun x
lapw1 .

3.11. CALCULATING PROPERTIES 27

Figure 3.8: TiC: total DOS

Figure 3.9: TiC: C partial s-DOS

Figure 3.10: TiC: C partial p-DOS

Figure 3.11: TiC: Ti partial d-DOS

Figure 3.12: TiC: Ti partial eg-DOS

Figure 3.13: TiC: Ti partial t2g-DOS

28 CHAPTER 3. QUICK START

3.11.3 X-ray spectra

Select “X-Ray Spectra” from the “Tasks menu” and click on the buttons one by one:

I Calculate partial charges (x lapw2 -qtl). This is only possible, when you still
have a valid TiC.vector file on a tetrahedral mesh. To reproduce this figure you
will have to increase the EMAX value in your TiC.in1 to 2.5 Ry and rerun x lapw1

I Edit TiC.inxs ; choose the offered template. This template will calculate the LIII -
spectrum of the first atom (Ti in this example) in the energy range between -2 and
15 eV. For a detailed description of the contents of this input file refer to section
8.10.3.

I Calculate spectra
I Preview spectra

If you want to use the supplied plotting interface specplot to preview the results, the public domain
program gnuplot must be installed on your computer. The calculated TiC Ti-LIII -spectrum can be
compared with figure 3.14.

Figure 3.14: Ti LIII spectrum of TiC

3.11.4 Bandstructure

Select “Bandstructure” from the “Tasks” menu and click on the buttons one by one:

I Append the $WIENROOT/SRCtemplates/fcc.klist file and change the entry
“K-points from unit” 4 to 5 in TiC.in1 . (To calculate a bandstructure a special
k-mesh along high symmetry directions is necessary. For a few crystal structures
template files are supplied in the SRC-directory, you can also use XCRYSDEN (save
it as xcrasden.klist) to generate a k-mesh or type in your own mesh.
to TiC.in1 and change the entry “K-points from unit” 4 to 5.

I Calculate Eigenvalues
Note: When you want to calculate DOS, charge densities or spectra after this bandstruc-
ture, you must first recalculate the TiC.vector file using the “tetrahedral” k-mesh,
because the k-mesh for the band structure plots is not suitable for calculations of such
properties.

I Edit TiC.insp : insert the correct Fermi energy (which can be found in the saved
scf -file) and specify plotting parameters. For comparison with figure 3.15 select
an energy-range from -13 to 8 eV.

3.11. CALCULATING PROPERTIES 29

I Calculate Bandstructure (x spaghetti).
I Preview Bandstructure (needs ghostscript installed).
I Reset unit to 4 in TiC.in1 , to make sure that the “tetrahedral” k-mesh is used

again for subsequent calculations.

If you want to preview the bandstructure, the program ghostview (public domain) must be in-
stalled on your computer. You can compare your calculated bandstructure with figure 3.15.

tic atom 0 size 0.40

W L Λ Γ ∆ X Z W K

EF

E
ne

rg
y

(e
V

)

 0.0

 1.0

 2.0

 3.0

 4.0

 5.0

 6.0

 7.0

 8.0

 -1.0

 -2.0

 -3.0

 -4.0

 -5.0

 -6.0

 -7.0

 -8.0

 -9.0

-10.0

-11.0

-12.0

-13.0

Figure 3.15: Bandstructure of TiC

3.11.5 Bandstructure with band character plotting

Select “Bandstructure (with band character)” from the “Tasks” menu and click on the buttons one by
one:

I Insert k-points and change unit to 5 in TiC.in1 (see previous section)
I Calculate Eigenvalues (x lapw1)
I Edit TiC.in2 : Change FERMI-method (efmod) from TETRA to ROOT
I Calculate partial charges (x lapw2 -qtl)

Note: You have to calculate the partial charges for the new special k-mesh specified above
and cannot use the partial charges from the DOS calculation.

I Edit TiC.insp : insert the correct Fermi energy and specify plotting parameters.
For comparison with figure 3.16 select an energy-range from -13 to 8 eV, and set
jatom=1, jtype=6 and jsize=0.2 to produce a character plot of the Ti t2g-like charac-
ter bands. Also check the number of bands in the TiC.qtl file to set the number
of bands for character plotting accordingly.

I Calculate Bandstructure (x spaghetti)
I Preview Bandstructure
I Reset the changes made in TiC.in1 and TiC.in2 . (Do not forget this point, you

will run into troubles later.)

You can compare your results with figure 3.16.

30 CHAPTER 3. QUICK START

tic atom 1D-t2g size 0.20

W L Λ Γ ∆ X Z W K

EF

E
ne

rg
y

(e
V

)

 0.0

 1.0

 2.0

 3.0

 4.0

 5.0

 6.0

 7.0

 8.0

 -1.0

 -2.0

 -3.0

 -4.0

 -5.0

 -6.0

 -7.0

 -8.0

 -9.0

-10.0

-11.0

-12.0

-13.0

Figure 3.16: Bandstructure of TiC, showing t2g-character bands of Ti in character plotting mode

3.11.6 Volume Optimization

Select “Optimize (V,c/a)” from the “Execution” menu. Setup the shell script optimize.job script
using x optimize and volume variations of -10, -5, 0, +5 and +10%. Edit this file and uncomment
the x dstart line (remove the “#” character). Then run the optimize.job . When the job has
finished, you should click on Analyze results and then preview the energy curve. Set 136.77 a.u. for
the experimental V0.

You should get an energy curve as in figure 3.17. On the screen you will find the fitting parameters
for the “equation of states” (Murnaghan and the EOS2 equation, see sec. 9.5). This information is
also written to TiC.outputeos .

Figure 3.17: Energy vs. volume curve for TiC

3.12. SETTING UP A NEW CASE 31

3.12 Setting up a new case

In order to setup a new case you need at least the following information:

I The lattice parameters (in Bohr or Ångstroms) and angles,
I the lattice type (primitive, face-centered, hexagonal,...) or spacegroup,
I the position of all equivalent and inequivalent atoms in fractions of the unit cell.
I Alternatively with the new StructGenTM you can specify the spacegroup and only the in-

equivalent positions. The equivalent ones will be generated automatically.

Usually this information can be collected from the “International Tables of Crystallography” once
you know the space group, the Wyckoff position and the internal free coordinates.

3.12.1 Manually setting up a new case

Usually for a new “case“ the input is not created from scratch, but one uses the struct and inst
files from a similar case as pattern. Change into the lapw subdirectory and proceed as follows:

mkdir case new
cd case new
cp ../case old/case old.inst case new.inst
cp ../case old/case old.struct case new.struct

Now edit case new.struct (see section 4.3) and case new.inst (section 6.4) as necessary. Al-
ternatively you can use instgen lapw to generate case new.inst .

3.12.2 Setting up a new case using w2web

Use the menu Session Mgmt. o change session of w2web to create a new session (enter the name of
the new session and click on “Create”). Then you should also create a new directory and “select”
it..

When you select “Execution o StructGenTM”, a template file will be copied to case.struct .
To create the new case using the StructGenTM you simply specify cell parameters, positions of
atoms, etc. When you “save file and clean up” the new case.struct file and the case.inst file
are created automatically.

For more information on the StructGenTM refer to page 131.

32 CHAPTER 3. QUICK START

Part II

Detailed description of the files and
programs of the WIEN2k package

33

4 File structure and program flow

Contents

4.1 Flow of input and output files . 35
4.2 Input/Output files . 39
4.3 The case.struct.file . 40
4.4 The case.scf file . 43
4.5 Flow of programs . 44

(for naming conventions see section 3.1)

4.1 Flow of input and output files

Each program is started with (at least) one command line argument, e.g.

programX programX.def

in which the arguments specifies a filename, in which FORTRAN I/O units are connected to unix
filenames. (See examples at specific programs). These “def “-files are generated automatically
when the standard WIEN2k scripts x , init lapw or run lapw are used, but may be tailored by
hand for special applications. Using the option

x program -d

a def-file can be created without running the program. In addition each program reads/writes the
following files:

case.struct a “master“ input file, which is described below (Section 4.3)
case.inX a specific input file, where X labels the program (see def-files for each program in chapter

6).
case.outputX an output file

The programs of the SCF cycle (see figure 4.1) write the following files:

case.scfX a file containing only the most significant output (see description below).
program.error error report file, should be empty after successful completion of a program (see

chapter 6)

35

36 CHAPTER 4. FILES AND PROGRAM FLOW

ne
ce

ss
ar

y
op

tio
na

l

br
oy

d1

sc
f0

cl
m

su
m

(o
ld

)
L

A
PW

0

L
A

PW
1

L
C

O
R

E

cl
m

co
r

sc
fc

ve
ct

or

sc
f1

kg
en

L
A

PW
2

vs
p

vn
s

cl
m

sc

cl
m

va
l

sc
f2

he
lp

3*

sc
fm

(o
ld

)

M
E

R
G

E
sc

f
M

IX
E

R

cl
m

su
m

(n
ew

)

(n
ew

)
sc

fm

br
oy

d2

Figure 4.1: Data flow during a SCF cycle (programX.def, case.struct, case.inX, case.outputX and
optional files are omitted)

4.1. FLOW OF INPUT AND OUTPUT FILES 37

The following tables describe input and output files for the initialization programs nn , sgroup ,
symmetry , lstart , kgen , dstart (table 4.1), the utility programs tetra , irrep , spaghetti ,
aim , lapw7 , elnes , lapw3 , lapw5 , xspec , optic , joint , kram , optimize and mini (table
4.2) as well as for a SCF cycle of a non-spin-polarized case (table 4.2). Optional input and output
files are used only if present in the respective case subdirectory or requested/generated by an
input switch. The connection between FORTRAN units and filenames are defined in the respective
programX.def files. The data flow is illustrated in Fig. 4.1.

program needs generates
necessary optional necessary optional

NN nn.def case.outputnn case.struct nn
case.struct

SGROUP case.struct case.outputsgroup case.struct st

SYMMETRY symmetry.def case.outputs case.struct sgroup
case.struct case.in2 st case.in2 st

LSTART lstart.def case.outputst case.rspup
case.struct case.rsp case.rspdn
case.inst case.in0 st case.vsp st

case.in1 st case.vspdn st
case.in2 st case.sigma
case.inc st
case.inm st
case.inm restart

KGEN kgen.def case.outputkgen
case.struct case.klist

case.kgen
DSTART dstart.def case.outputd

case.struct case.clmsum(up)
case.rsp(up) dstart.error
case.in1
case.in2

Table 4.1: Input and output files of init programs

program needs generates
necessary optional necessary optional

SPAGHETTI spaghetti.def case.qtl case.spaghetti ps case.spaghetti ene
case.insp case.outputsp
case.struct
case.output1

TETRA tetra.def case.outputt
case.int case.dos1(2,3)
case.qtl case.dos1ev(1,2,3)
case.kgen

LAPW3 lapw3.def case.output3
case.struct case.rho
case.in2
case.clmsum case.clmsum

LAPW5 lapw5.def case.sigma case.output5 case.rho.oned
case.struct case.rho
case.in5
case.clmval

XSPEC xspec.def case.outputx case.coredens
case.inc case.dos1ev
case.int case.xspec
case.vsp case.txspec
case.struct case.m1
case.qtl case.m2

OPTIC optic.def case.outputop
case.struct case.outmat
case.inop
case.vsp
case.vector

JOINT joint.def case.outputjoint case.sigma intra
case.injoint case.joint case.intra
case.struct

continued on next page

38 CHAPTER 4. FILES AND PROGRAM FLOW

case.kgen
case.weight
case.outmat

KRAM kram.def case.epsilon case.eloss
case.inkram case.sigmak case.sumrules
case.joint

OPTIMIZE case.struct case initial.struct optimize.job case vol xxxxx.struct
case c/a xxxxx.struct

MINI mini.def case.scf mini case.outputM case.clmsum inter
case.inM case.tmpM case.tmpM1
case.finM case.clmsum
case.scf case.clmhist case.scf mini1
case.struct case.struct1

IRREP case.struct case.outputirrep
case.vector case.irrep

AIM case.struct case.outputaim case.crit
case.clmsum case.surf
case.inaim

LAPW7 case.struct case.output7 case.abc
case.vector case.grid
case.in7 case.psink
case.vsp

Table 4.2: Input and output files of utility programs

program needs generates
necessary optional necessary optional

LAPW0 lapw0.def case.clmup/dn case.output0 case.r2v
case.struct case.scf0 case.vcoul
case.in0 case.vsp(up/dn)
case.clmsum case.vns(up/dn)

lapw0.error
LAPW1 lapw1.def case.vns case.output1(s) case.nsh(s)

case.struct case.klist case.scf1(s)
case.in1 case.vector(s)
case.vsp lapw1.error

LAPWSO lapwso.def
case.struct case.outputso case.vectorso
case.inso case.scfso case.vectordum
case.vector case.norm lapwso.error
case.vsp

LAPW2 lapw2.def case.kgen case.output2(s) case.qtl(s)
case.struct case.nsh(s) case.scf2(s) case.weight
case.in2(s) case.weight case.clm[val|sc] case.weigh
case.vector(s) case.weigh case.help3*
case.vsp lapw2.error

LAPWDM lapwdm.def case.inso case.outputdm
case.struct case.scfdm
case.indm case.dmat
case.vector lapwdm.error
case.vsp
case.weigh

SUMPARA case.struct case.scf2p case.outputsum
case.clmval case.clmval

case.scf2
ORB orb.def case.scf1 case.outputU case.br1orb

case.struct case.vorb old case.scforb case.br2orb
case.inorb case.vorb case.weigh
case.dmat orb.error
case.vsp

LCORE lcore.def case.vns case.outputc case.corewf
case.struct case.scfc
case.inc case.clmcor
case.vsp lcore.error

After LCORE the case.scfX files are appended to case.scf and the
case.clmsum file is renamed to case.clmsum old (see run lapw)

MIXER mixer.def case.clmsum old case.outputm case.broyd1
case.struct case.clmsc case.scfm case.broyd2
case.inm case.clmcor case.clmsum
case.clmval case.scf mixer.error

case.broyd1
continued on next page

4.2. INPUT/OUTPUT FILES 39

case.broyd2
After MIXER the file case.scfm is appended to case.scf , so that after an iteration is

completed, the two essential files are case.clmsum and case.scf .

Table 4.3: Input and output files of main programs in an SCF cycle

4.2 Description of general input/output files

In the following section the content of the (non-trivial) output files is described:

case.broydX Contains the charge density of previous iterations if you use Broyden’s method for
mixing. They are removed when using save lapw . They should be removed by hand when
calculational parameters (RKMAX, kmesh, . . .) have been changed, or the calculation crashed
due to a too large mixing and are restarted by using a new density generated by dstart.

case.clmcor Contains the core charge density (as σ(r) = 4πr2ρ(r) and has only a spherical part).
In spin-polarized calculations two files case.clmcorup and case.clmcordn are used instead.

case.clmsc Contains the semi-core charge density in a 2-window calculation, which is no longer
recommended. In spin-polarized calculations two files are used instead: case.clmscup and
case.clmscdn .

case.clmsum Contains the total charge density in the lattice harmonics representation and as
Fourier coefficients. (The LM=0,0 term is given as σ(r) = 4πr2ρ(r), the others as r2ρLM (r);
suitable for generating electron density plots using lapw5 when the TOT-switch is set,
(see section 8.6). In spin-polarized calculations two additional files case.clmup and
case.clmdn contain the spin densities. Generated by dstart or mixer .

case.clmval Contains the valence charge density as r2ρLM (r); suitable for generating valence elec-
tron density plots using lapw5 when the VAL-switch is set, (see 8.6). In spin-polarized cal-
culations two files case.clmvalup and case.clmvaldn are used instead.

case.dmatup/dn Contains the density matrix generated by lapwdm for LDA+U or OP calculations.
case.dosX Contains the density of states (states/Ry) and corresponding energy (in Ry at the inter-

nal energy scale) generated by tetra . X can be 1-3. Additional files case.dosXev contain
the DOS in (states/eV) and the energy in eV with respect to EF.

case.help3X Contains eigenvalues and partial charges for atom number X.
case.kgen This file contains the indices of the tetrahedra in terms of the list of k-points. It is used

in lapw2 (if EFMOD switch in case.in2 is set to TETRA, see 7.4.3) and in tetra .
case.klist This file contains a list of k-points in the first BZ and represents a tetrahedral (special

point) mesh. It is generated in kgen and can either be inserted into the case.in1 file or
used directly in kgen .

case.qtl Contains eigenvalues and corresponding partial charges (bandwise) in a form suitable for
tetra and band structure plots with “band character”. The decomposition of these charges
is controlled by ISPLIT in case.struct.

case.rho Contains the electron densities on a grid in a specified plane generated by lapw5 . This
file can be used as input for your favorite contour or 3D plotting program.

case.rsp Contains the atomic densities generated by lstart . They are used by dstart to gener-
ate a first crystalline density (case.clmsum).

case.r2v Contains the exchange potential (in the lattice harmonics representation as r2 ∗ VLM (r)
and as Fourier coefficients) in a form suitable for plotting with lapw5 .

case.scf mini Contains the last scf-iteration of each individual time (geometry) step during a struc-
tural minimization using mini . Thus this file contains a complete history of properties (en-
ergy, forces, positions) during a structural minimization.

case.sigma Contains the atomic densities for those states with a “P” in case.inst . Generated in
lstart and used for difference densities in lapw5 .

case.spaghetti ps A ps file with the energy bandstructure plot generated by spaghetti .

40 CHAPTER 4. FILES AND PROGRAM FLOW

case.vcoul Contains the Coulomb and the total potential (in the lattice harmonics representation
as r2 ∗ VLM (r) and as Fourier coefficients) in a form suitable for plotting with lapw5 (split
the file manually to select Coulomb or total potential).

case.vector Binary file, contains the eigenvalues and eigenvectors of all k-points calculated in
lapw1 . In spin-polarized calculations two files case.vectorup and case.vectordn are
used instead. lapwso generates case.vectorso .

case.vns Contains the non-spherical part of the total potential V. Inside the sphere the radial co-
efficients of the lattice harmonics representation are listed (for L greater than 0), while for
the interstitial region the Fourier coefficients are given (see equ. (2.10)). In spin-polarized
calculations two files case.vnsup and case.vnsdn are used instead.

case.vorbup/dn Contains the orbital dependent part of the potential in LDA+U or OP calculations.
Generated in orb , used in lapw1 .

case.vsp Contains the spherical part of the total potential V stored as r ∗ V (thus the first val-
ues should be close to −2 ∗ Z). In spin-polarized calculations two files case.vspup and
case.vspdn are used instead.

4.3 The “master input“ file case.struct

The file case.struct defines the structure and is the main input file used in all programs. We
provide several examples in the subdirectory

example struct file

If you are using the “Struct Generator” from the graphical user interface w2web, you don’t have to
bother with this file directly! However, the description of the fields of the input mask can be found
here.

Note: If you are changing this file manually, please note that this is a formatted file and the proper column
positions of the characters are important! Use REPLACE instead of DELETE and INSERT during edit!

We start the description of this file with an abridged example for rutile TiO2 (adding line numbers):

--------------------- top of file ---------------------line #
Titaniumdioxide TiO2 (rutile): u=0.305 1
P LATTICE,NONEQUIV. ATOMS: 2 2
MODE OF CALC=RELA 3

8.6817500 8.6817500 5.5916100 90. 90. 90. 4
ATOM= -1: X= 0.0000000 Y= 0.0000000 Z= 0.0000000 5

MULT= 2 ISPLIT= 8 6
ATOM= -1: X= 0.5000000 Y= 0.5000000 Z= 0.5000000
Titanium NPT= 781 R0=.000022391 RMT=2.00000000 Z:22.0 7
LOCAL ROT MATRIX: -.7071068 0.7071068 0.0000000 8

0.7071068 0.7071068 0.0000000 9
0.0000000 0.0000000 1.0000000 10

ATOM= -2: X= 0.3050000 Y= 0.3050000 Z= 0.0000000
MULT= 4 ISPLIT= 8

ATOM= -2: X= 0.6950000 Y= 0.6950000 Z= 0.0000000
ATOM= -2: X= 0.8050000 Y= 0.1950000 Z= 0.5000000
ATOM= -2: X= 0.1950000 Y= 0.8050000 Z= 0.5000000
Oxygen NPT= 781 R0=.000017913 RMT=1.60000000 Z: 8.0
LOCAL ROT MATRIX: 0.0000000 -.7071068 0.7071068

0.0000000 0.7071068 0.7071068
1.0000000 0.0000000 0.0000000

16 SYMMETRY OPERATIONS: 11
1 0 0 0.00 12
0 1 0 0.00 13
0 0 1 0.00 14

1 15
1 0 0 0.00
0 1 0 0.00
0 0-1 0.00

2
........

15

4.3. THE CASE.STRUCT.FILE 41

0 1 0 0.50
-1 0 0 0.50

0 0 1 0.50
16

------------------ bottom of file ---------------------------

Interpretive comments on this file are as follows.

P all primitive lattices except hexago-
nal (trigonal lattice is also supported)

[a sin(γ), a cos(γ), 0], [0, b, 0], [0, 0, c]

F face-centered [a/2, b/2, 0], [a/2, 0, c/2], [0, b/2, c/2]
B body-centered [a/2, -b/2, c/2],[a/2, b/2, -c/2], [-a/2, b/2, c/2]
CXY c-base-centered (orthorhombic only) [a/2, -b/2, 0], [a/2, b/2, 0], [0, 0, c]
CYZ a-base-centered (orthorhombic only) [a, 0, 0], [0, -b/2, c/2], [0, b/2, c/2]
CXZ b-base-centered (orthorh. and mono-

clinic)
[a sin(γ)/2, a cos(γ)/2, -c/2], [0, b, 0], [a sin(γ)/2, a
cos(γ)/2, c/2]

R rhombohedral [a/
√

3/2, -a/2, c/3],[a/
√

3/2, a/2, c/3],[-a/
√

3, 0, c/3]
H hexagonal [

√
3a/2, -a/2, 0],[0, a, 0],[0, 0, c]

Table 4.4: Lattice type, description and bravais matrix used in WIEN2k

line 1: format (A80)
title (compound)

line 2: format (A4,24X,I2)
lattice type, NAT

lattice type as defined in table 4.4. For definitions of the triclinic lattice see
SRCnn/dirlat.f

NAT number of inequivalent atoms in the unit cell

line 3: format (13X,A4)
mode

RELA fully relativistic core and scalar relativistic valence
NREL non-relativistic calculation

line 4: format (6F10.6)
a, b, c, α, β, γ

a, b, c unit cell parameters (in a.u., 1 a.u. = 0.529177 Å). In face- or body-centered
structures the primitive (cubic) lattice constant, for rhombohedral (R) lattices
the hexagonal lattice constants must be specified. (The following may help you
to convert between hexagonal and rhombohedral specifications:
ahex = 2cos(π−αrhomb

2
)arhomb

chex = 3
√
a2
rhomb −

1
3
a2
hex

and (for fcc-like lattices) arhomb = acubic/
√

2
α, β, γ angles between unit axis (if omitted, 90◦ is set as default). Set it only for P and

CXZ lattices

line 5: format (5X,I3,4X,F10.8,3X,F10.8,3X,F10.8)
atom-index, x, y, z

atom-
index

running index for inequivalent atoms

positive in case of cubic symmetry
negative for non-cubic symmetry
this is set automatically using symmetry

42 CHAPTER 4. FILES AND PROGRAM FLOW

x,y,z position of atom in internal units, i.e. as positive fractions of unit cell parame-
ters. (0 ≤ x ≤ 1; the positions in the unit cell are consistent with the convention
used in the International Tables of Crystallography 64. In face- (body-) centered
structures only one of four (two) atoms must be given, eg. in Fm3m position 8c
is specified with 0.25, 0.25, 0.25 and .75, 0.75, 0.75). For R lattice use rhombo-
hedral coordinates. (To convert from hexagonal into rhombohedral coordinates
use the auxiliary program hex2rhomb , which can be found in “Run Programs
o Other Goodies” from w2web):

~Xortho = ~Xhex

 0 1 0√
3

2
−1
2

0
0 0 1

~Xrhomb = ~Xortho

 1√
3

1√
3

−2√
3

−1 1 0
1 1 1

line 6: format (15X,I2,17X,I2)

multiplicity, isplit

multiplicity number of equivalent atoms of this kind
isplit this is just an output-option and is used to specify the decomposition of the

lm-like charges into irreducible representations, useful for interpretation in
case.qtl). This parameter is automatically set by symmetry :

0 no split of l-like charge
1 p-z, (p-x, p-y) e.g.:hcp
2 e-g, t-2g of d-electrons e.g.:cubic
3 d-z2, (d-xy,d-x2y2), (d-xz,dyz) e.g.:hcp
4 combining option 1 and 3 e.g.:hcp
5 all d symmetries separate
6 all p symmetries separate
8 combining option 5 and 6
-2 d-z2, d-x2y2, d-xy, (d-xz,d-yz)
88 split lm like charges (for telnes)
99 calculate cross-terms (for telnes)

>>>: line 5 must now be repeated MULT-1 times for the other positions of each equivalent atom according
to the Wyckoff position in the “International Tables of Crystallography”.

line 7: format (A10,5X,I5,5X,F10.8,5X,F10.5,5X,F5.2)
name of atom, NPT, R0, RMT, Z

name of
atom

Use the chemical symbol. Positions 3-10 for further labeling of nonequivalent
atoms (use a number in position 3)

NPT number of radial mesh points (381 gives a good mesh for LDA calculations,
but for GGA twice as many points are recommended; always use an odd number
of mesh points!) the radial mesh is given on a logarithmic scale: r(n) = R0 ∗
e[(n−1)∗DX]

R0 first radial mesh point (typically between 0.0005 and 0.00005)
RMT atomic sphere radius (muffin-tin radius), can easily be estimated after running

NN (see 6.1). The following guidelines will be given here: Choose spheres as
large as possible as this will save MUCH computer time. But: Use identical
radii within a series of calculations (i.e. when you want to compare total en-
ergies) — therefore consider first how close the atoms may possibly come later
on (volume or geometry optimization); do NOT make the spheres too different
(even when the geometry would permit it), instead use the largest spheres for
f-electron atoms, 10-20 % smaller ones for d-elements and again 10-20 % smaller
for sp-elements; H is a special case, you may choose it much smaller (e.g. 0.6
and 1.2 for H and C) and systems containing H need a much smaller RKMAX
value (3-5) in case.in1 .

Z atomic number

4.4. THE CASE.SCF FILE 43

line 8-10: format (20X,3F10.7)

ROTLOC local rotation matrix (always in an orthogonal coordinate system). Transforms
the global coordinate system (of the unit cell) into the local at the given atomic
site as required by point group symmetry (see in the INPUT-Section 7.4.3 of
LAPW2). SYMMETRY calculates the point group symmetry and determines
ROTLOC automatically. Note, that a proper ROTLOC is required, if the LM
values generated by SYMMETRY are used. A more detailed description with
several examples is given in the appendix A and sec. 10.3

>>>: lines 5 thru 10 must be repeated for each inequivalent atom
line 11: format (I4)

nsym number of symmetry operations of space group (see International Tables of
Crystallography 64)
If nsym is set to zero, the symmetry operations will be generated automatically
by SYMMETRY.

line 12-14: format (3I2,F10.7)
matrix, tau (as listed in the International Tables of Crystallography 64)

matrix matrix representation of (space group) symmetry operation
tau non-primitive translation vector

line 15: format (I8)
index of symmetry operation specified above

>>>: lines 12 thru 15 must be repeated for all other symmetry operations
(the complete list is contained in sample inputs)

4.4 The “history“ file case.scf

During the self-consistent field (SCF) cycle the essential data are appended to the file case.scf
in order to generate a summary of previous iterations. For an easier retrieval of certain quantities
the essential lines are labeled with :LABEL:, which can be used to monitor these quantities during
self-consistency as explained below. The most important :LABELs are

:ENE total energy (Ry)
:DIS charge distance between last 2 iterations (

∫
|ρn − ρn−1|dr). Good convergence criteria.

:FER Fermi energy
:FORxx force on atom xx in mRy/bohr (in the local (for each atom) carthesian coordinate system)
:FGLxx force on atom xx in mRy/bohr (in the global coordinate system of the unit cell (in the same

way as the atomic positions are specified))
:DTOxx total difference charge density for atom xx between last 2 iterations
:CTOxx total charge in sphere xx (mixed after MIXER)
:NTOxx total charge in sphere xx (new (not mixed) from LAPW2+LCORE)
:QTLxx partial charges in sphere xx
:EPLxx l-like partial charges and “mean energies” in lower (semicore) energy window for atom

xx. Used as energy parameters in case.in1 for next iteration
:EPHxx l-like partial charges and “mean energies” in higher (valence) energy window for atom xx.

Used as energy parameters in case.in1 for next iteration
:EFGxx Electric field gradient (EFG) Vzz for atom xx
:ETAxx Asymmetry parameter of EFG for atom xx
:RTOxx Density for atom xx at the nucleus (first radial mesh point)
:VZERO Gives the total, Coulomb and xc-potential at z=0 and z=0.5 (meaningfull only for slab

calculations)

44 CHAPTER 4. FILES AND PROGRAM FLOW

To check to which type of calculation a scf file corresponds use:

:POT Exchange-correlation potential used in this calculation
:LAT Lattice parameters in this calculation
:VOL Volume of the unit cell
:POSxx Atomic positions for atom xx (as in case.struct)
:RKM Actual matrix size and resulting RKmax
:NEC normalization check of electronic charge densities. If a significant amount of electrons

is missing, one might have core states, whose charge density is not completely confined
within the respective atomic sphere. In such a case the corresponding states should be
treated as band states (using LOs).

For spin-polarized calculations:

:MMTOT Total spin magnetic moment/cell
:MMIxx Spin magnetic moment of atom xx. Note, that this value depends on RMT.
:CUPxx spin-up charge (mixed) in sphere xx
:CDNxx spin-dn charge (mixed) in sphere xx
:NUPxx spin-up charge (new, from lapw2+lcore) in sphere xx
:NDNxx spin-dn charge (new, from lapw2+lcore) in sphere xx
:ORBxx Orbital magnetic moment of atom xx (needs SO calculations and LAPWDM).
:HFFxx Hyperfine field of atom xx (in kGauss).

One can monitor the energy eigenvalues (listed for the first k-point only), the Fermi-energy or
the total energy. Often the electronic charges per atom reflect the convergence. Charge transfer
between the various atomic spheres is a typical process during the SCF cycles: large oscillations
should be avoided by using a smaller mixing parameter; monotonic changes in one direction sug-
gest a larger mixing parameter.

In spin-polarized calculations the magnetic moment per atomic site is an additional crucial quan-
tity which could be used as convergence criterion.

If a system has electric field gradients and one is interested in that quantity, one should monitor
the EFGs, because these are very sensitive quantities.

It is best to monitor several quantities, because often one quantity is converged, while another still
changes from iteration to iteration. The script run lapw has three different convergence criteria
built in, namely the total energy, the atomic forces and the charge distance (see 5.1.2, 5.1.3).

We recommend the use of UNIX commands like :

grep :ENE case.scf or use “Analysis” from w2web

for monitoring such quantities.

You may define an alias for this (see sec. 11.2), and a csh-script grepline lapw is also available
to get a quantity from several scf-files simultaneously (sec. 5.2.9 and 5.3).

4.5 Flow of programs

The WIEN2k package consists of several independent programs which are linked via C-SHELL
SCRIPTS described below.

The flow and usage of the different programs is illustrated in the following diagram (Fig. 4.2):

The initialization consists of running a series of small auxiliary programs, which generates the
inputs for the main programs. One starts in the respective case/ subdirectory and defines the

4.5. FLOW OF PROGRAMS 45

old ρcoreρval(+)ρnew =

ρnew

ρval

Ek ψ k

ψ k Ek ψ k− 2
+ V =

ρcore

VMT

Ecore

ψnl Enl ψnl=H

ρval
E < Ek F

= Σ ψψ∗k k

ρold

VC VXCV= +

VXC ρ LDA()
VC

2 = −8 Poissonπρ

ρ

k−mesh

LAPW0

ψnl Enl ψnl=H

SYMMETRYSGROUP

converged ?

no

MIXER

LAPW2

V

LAPW1

atomic calculation

LCORE

LAPWSO

STOP
yes

atomic calculation

LSTARTNN

atomic densities

input files

DSTART

superposition of

atomic densities

ρ

check for
overlap. spheres

input files
struct filesstruct files

KGEN

generation

add spin−orbit interaction

LAPWDM
calculates density matrix

ORB
LDA+U, OP potentials

Figure 4.2: Program flow in WIEN2k

46 CHAPTER 4. FILES AND PROGRAM FLOW

structure in case.struct (see 4.3). The initialization can be invoked by the script init lapw
(see sec. 3.7 and 5.1.2), and consists of running:

NN a program which lists the nearest neighbor distances up to a specified limit (defined by a
distance factor f) and thus helps to determine the atomic sphere radii. In addition it is a
very usefull additional check of your case.struct file (equivalency of atoms)

SGROUP determines the spacegroup of the structure defined in your case.struct file.
SYMMETRY generates from a raw case.struct file the space group symmetry operations, deter-

mines the point group of the individual atomic sites, generates the LM expansion for the
lattice harmonics and determines the local rotation matrices.

LSTART generates free atomic densities and determines how the different orbitals are treated in
the band structure calculations (i.e. as core or band states, with or without local orbitals,. . .).

KGEN generates a k-mesh in the irreducible part of the BZ.
DSTART generates a starting density for the scf cycle by a superposition of atomic densities

generated in LSTART.

Then a self-consistency cycle is initiated and repeated until convergence criteria are met (see 3.8
and 5.1.3). This cycle can be invoked with a script run lapw , and consists of the following steps:

LAPW0 (POTENTIAL) generates potential from density
LAPW1 (BANDS) calculates valence bands (eigenvalues and eigenvectors)
LAPW2 (RHO) computes valence densities from eigenvectors
LCORE computes core states and densities
MIXER mixes input and output densities

4.5.1 Core, semi-core and valence states

In many cases it is desirable to distinguish three types of electronic states, namely core, semi-core
and valence states. For example titanium has core (1s, 2s, 2p), semi-core (3s, 3p) and valence (3d,
4s, 4p) states. In our definition core states are only those whose charge is entirely confined inside
the corresponding atomic sphere. They are deep in energy, e.g., more than 7-10 Ry below the Fermi
energy. Semi-core states lie high enough in energy (between about 1 and 7 Ry below the Fermi
energy), so that their charge is no longer completely confined inside the atomic sphere, but has a
few percent outside the sphere. Valence states are energetically the highest (occupied) states and
always have a significant amount of charge outside the spheres.

The energy cut-off specified in lstart during init lapw (usually -6.0 Ry) defines the separation
into core- and band-states (the latter contain both, semicore and valence). If a system has atoms
with semi-core states, then the best way to treat them is with “local orbitals“, an extension of the
usual LAPW basis. An input for such a basis set will be generated automatically. (Additional LOs
can also be used for valence states which have a strong variation of their radial wavefunctions with
energy (e.g. d states in TM compounds) to improve the quality of the basis set, i.e. to go beyond
the simple linearization).

4.5.2 Spin-polarized calculation

For magnetic systems spin-polarized calculations can be performed. In such a case some steps are
done for spin-up and spin-down electrons separately and the script runsp lapw consists of the
following steps:

LAPW0 (POTENTIAL) generates potential from density
LAPW1 -up (BANDS) calculates valence bands for spin-up electrons
LAPW1 -dn (BANDS) calculates valence bands for spin-down electrons
LAPW2 -up (RHO) computes valence densities for spin-up electrons

4.5. FLOW OF PROGRAMS 47

LAPW2 -dn (RHO) computes valence densities for spin-down electrons
LCORE -up computes core states and densities for spin-up electrons
LCORE -dn computes core states and densities for spin-down electrons
MIXER mixes input and output densities

The use of spin-polarized calculations is illustrated for fcc Ni (section 10.2), one of the test cases
provided in the WIEN2k package.

4.5.3 Fixed-spin-moment (FSM) calculations

Using the script runfsm lapw -m XX it is possible to constrain the total spin magnetic moment
per unit cell to a fixed value XX and thus force a particular ferromagnetic solution (which may
not correspond to the equillibrium). This is particularly useful for systems with several metastable
(non-) magnetic solutions, where conventional spin-polarized calculation would not converge or
the solution may depend on the starting density. Additional SO-interaction is not supported at the
moment.

4.5.4 Antiferromagnetic (AFM) calculations

Several considerations are necessary, when you want to perform an AFM calculation.

I First you have to construct a unit cell which allows the desired AF ordering. For example for
bcc Cr you must select a “P” lattice and specify both atoms, Cr1 at (0,0,0) and Cr2 at (.5,.5,.5),
corresponding to a CsCl structure. Note, that it is important to label the two Cr atoms with
“Cr1” and “Cr2”, since only then the symmetry programs can detect that those atoms should
be different (although they have the same Z).

I Edit case.inst and flip the spin of one of the AF atoms (i.e. invert the spin up and dn
occupation numbers). In addition you must set a zero moment (identical spin up and dn oc-
cupations) for all “non-magnetic” atoms, otherwise AFMINPUT cannot determine the proper
input for CLMCOPY.

I Run init lapw . At the end AFMINPUT creates an input file for the program CLMCOPY. It
tries to detect which spin-up density component corresponds to which spin-dn component.

I Run runafm lapw . This script calls LAPW1 and LAPW2 only for spin-up but the corre-
sponding spin-dn density is created by CLMCOPY according to the rules defined during
initialization.

I Since AFMINPUT and CLMCOPY are not well tested for all possible structures, it is highly
recommended that you save your work (save lapw) and check the results by continuing
with a regular runsp lapw . If nothing changes (E-tot and other properties), then you are
ok, otherwise make sure the scf calculation is well converged (-cc 0.0001 or better) and try to
redefine the AFM-”rules” with another call of AFMINPUT (For numerical reasons you may
have to assist the program and define two similar densities as equal or not.) However, it is
quite possible that AFMINPUT and/or CLMCOPY may not work properly for certain AFM
structures.

If runafm lapw works, it saves you more than a factor of 2 in in computer time, since only spin-up
is calculated and in addition the scf-convergence may be MUCH faster.

4.5.5 Spin-orbit interaction

You can treat spin-orbit interaction using a second-variational method with the scalar-relativistic
orbitals (from LAPW1) as basis. The number of eigenvalues will double since SO couples spin-up

48 CHAPTER 4. FILES AND PROGRAM FLOW

and dn states, so they are no longer separable. In addition, LOs with a “p1/2” radial basis can be
added. (Kunes et al. 2001)

To assist with the generation of the necessary input files and possible changes in symmetry, a script
initso lapw exists. For non-spinpolarized cases nothing particular must be taken into account
and SO can be easily applied by running run lapw -so . It will automatically use the complex
version of LAPW2.

However, for spin-polarized cases, the SO interaction can change (lower) the symmetry depending
on how you choose the direction of magnetization and care must be taken to get a proper setup.
initso lapw tries to assist you, but at the end you must know what you are doing.

Just a few hints what can happen:

I Suppose you have a cubic system and put the magnetization along [001]. This will create
a tetragonal symmetry (and you can temporarely tell this to the initialization programs by
changing the respective lattice parameter c to a tetragonal system).

I If you put the magnetization along [111], this creates most likely a rhombohedral (or hexag-
onal) symmetry. (Try to visualize this for a fcc lattice, XCRYSDEN is very usefull for this
purpose).

I If you don’t have inversion symmetry in the original structure, you most likely must not “add
inversion” in KGEN.

5 Shell scripts for running programs

Contents

5.1 Job control . 49
5.2 Utility scripts . 52
5.3 Structure optimization . 54
5.4 Parallel Execution . 56
5.5 Getting on-line help . 61
5.6 Interface scripts . 61

5.1 Job control (c-shell scripts)

In order to run WIEN2k several c-shell scripts are provided which link the individual programs to
specific tasks.

All available (user-callable) commands have the ending lapw so you can easily get a list of all
commands using

ls $WIENROOT/∗ lapw

in the directory of the WIEN2k executables. (Note: all of the more important commands have a link to a
short name omitting “ lapw”.) All these commands have at least one option, -h , which will print a
small help indicating purpose and usage of this command.

5.1.1 Main execution script (x lapw)

The main script, which executes a single program with automatic creation of the respective “def“-
file is called x lapw or x . You can call it with several switches to provide the proper file definitions
in case of semicore, spin-polarized or complex calculations. All options are listed with the help
switch

x -h or x lapw -h

This script can also be run from w2web by using the “Single Programs” menu.

USAGE: x PROGRAMNAME [flags]

PURPOSE:runs WIEN executables: afminput,aim,clmcopy,
lcore,dstart,eosfit,init_xspec,hex2rhomb,irrep,joint,kgen,kram,
lapw0,lapw1,lapw2,lapw3,lapw5,lapwdm,lapwso,lorentz,lstart,mini,
mixer,nn,optic,optimize,orb,rhomb_in5,sgroup,spaghetti,sumpara,

49

50 CHAPTER 5. SHELL SCRIPTS

symmetry,tetra,txspec,xspec,elnes,telnes,filtvec,lapw7

FLAGS:
-f FILEHEAD -> FILEHEAD for path of struct & input-files
-t/-T -> suppress output of running time
-h/-H -> help
-d -> create only the def-file
-up -> runs up-spin
-dn -> runs dn-spin
-sc -> runs semicore calculation
-c -> complex calculation (no inversion symmetry present)
-p -> run lapw1/2/so in parallel (needs .machines file)
-orb -> runs lapw1 with LDA+U/OP or B-ext correction
-it -> runs lapw1 with iterative diagonalization
-nohns-> runs lapw1 without HNS
-qtl -> calculates QTL in lapw2
-fermi-> calculates Fermi energy and weights in lapw2
-so -> runs lapw2 with def-file for spin-orbit calculation
-sel -> use reduced vector file in lapw7
USE: x -h PROGRAMNAME for valid flags for a specific program

Note: To make use of a scratch file system, you may specify such a filesystem in the environment variable
SCRATCH(it may already have been set by your system administrator). However, you have to make sure
that there is enough disk-space in the SCRATCHdirectory to hold your case.vector* and case.help*
files.

5.1.2 Job control for initialization (init lapw)

In order to start a new calculation, one should make a new subdirectory and run all calculations
from there. At the beginning one must provide two files (see 3), namely case.struct (see 4.3)
and case.inst (see 6.4.3), then one runs a series of programs using init lapw . This script is
described briefly in chapter 4.5) and in detail in “Getting started” for the example TiC (see chapter
3). You can get help with switch -h. All actions of this script are logged in short in :log and in
detail in the file case.dayfile , which also gives you a “restart” option when problems occurred.
In order to run init lapw starting from a specific point on, specify -s PROGRAM.

5.1.3 Job control for iteration (run lapw or runsp lapw)

In order to perform a complete SCF calculation, several types of scripts are provided with the
distribution. For the specific flow of programs see chapter 4.5.

I For non-spinpolarized calculations use: run lapw ,
I for spin-polarized calculations use: runsp lapw .
I for spin-polarized calculations but zero moment use: runsp c lapw .
I for antiferromagnetic calculations use: runafm lapw
I for FSM (fixed-spin moment) calculations use: runfsm lapw
I for a spin-polarized setup, where you want to constrain the moment to zero (e.g. for LDA+U

calculations) use: runsp c lapw

Cases with/without inversion symmetry and with/without semicore or core states are handled au-
tomatically by these scripts. All activities of these scripts are logged in short in :log (appended)
and in detail together with convergence information in case.dayfile (overwriting the old “day-
file“). You can always get help on its usage by invoking these scripts with the -h flag.

run lapw -h

PROGRAM: /zeus/lapw/WIEN2k/bin/run_lapw

PURPOSE: running the nonmagnetic scf-cycle in WIEN

5.1. JOB CONTROL 51

to be called within the case-subdirectory
has to be located in WIEN-executable directory

USAGE: run_lapw [OPTIONS] [FLAGS]

OPTIONS:
-cc LIMIT -> charge convercence LIMIT (0.0000)
-ec LIMIT -> energy convercence LIMIT (0.0001 Ry)
-fc LIMIT -> force convercence LIMIT (0 mRy/a.u.)
-e PROGRAM -> exit after PROGRAM ()
-i NUMBER -> max. NUMBER (20) of iterations
-s PROGRAM -> start with PROGRAM ()
-r NUMBER -> restart after NUMBER (20) iterations (rm *.broyd*)
-nohns NUMBER ->do not use HNS for NUMBER iterations
-ql LIMIT -> select LIMIT (0.05) as min.charge for E-L setting in new in1
-in1new N -> use "new" in1 file after N iter (rewrite in1 using scf info)

FLAGS:
-h/-H -> help
-I -> with initialization of in2-files to "TOT"
-p -> run k-points in parallel (needs .machine file [speed:name])
-so -> run SCF including spin-orbit coupling
-it -> use iterative diagonalization after first cycle
-it0 -> use iterative diagonalization (also in first cycle)
-renorm-> start with mixer and renormalize density
-in1orig-> use case.in1_orig file (after a previous -in1new)

CONTROL FILES:
.stop stop after SCF cycle
.fulldiag force full diagonalization

ENVIRONMENT VARIBLES:
SCRATCH directory where vectors and help files should go

Calling run lapw (after init lapw) from the subdirectory case will perform up to 20 iterations
(or what you specified with switch -i) unless convergence has been reached earlier. You can choose
from three convergence criteria, -ec (the total energy convergence is the default and is set to 0.0001
Ry for at least 3 iterations), -fc (magnitude of force convergence for 3 iterations) or -cc (charge
convergence, just the last iteration), but only one criterion can be specified. Be careful with these
criteria, different systems will require quite different limits (e.g. fcc Li can be converged to µRy,
YBa2Cu3O7 only to 0.1 mRy). With -e PROGRAM you can run only part of one scf cycle (e.g. run
lapw0, lapw1 and lapw2), with -s PROGRAM you can start at an arbitrary point in the scf cycle (e.g.
after a previous cycle has crashed and you want to continue after fixing the problem) and continue
to self-consistency. Before mixer is invoked, case.clmsum is copied to case.clmsum old , and
the final “important“ files of the scf calculation are case.clmsum and case.scf .

Invoking

run lapw -I -i 30 -fc 0.5

will first set in case.in2 the TOT-switch (if FOR was set) to save cpu time, then run up to 30 scf cycles
till the force criterion of 0.5 mRy/a.u. is met (for 3 consecutive iterations). Then the calculation of
all terms of the forces is activated (setting FOR in case.in2) for a final iteration.

The switch -in1new N preserves for N iteration the default case.in1 file, thus using the “old”
WIEN97 scheme to select the energy parameters. After the first N iterations write in1 lapw is
called and a new case.in1 file is generated, where the energy parameters are set according to
the :EPLxx and :EPHxx values of the last scf iteration and the -ql value (see sections 4.4 and 7.2).
In this way you select the best possible energy-parameters and also additional LOs to improve
the linearization may be generated automatically. Note, however, that this option is potentially
dangerous if you have a “bad” last iteration (or large changes from one scf iteration to the next.
The switch -in1orig can be used to switch back to the original (“old”) scheme.

Parallelization is described in Sec. 5.4.

Iterative diagonalization, which can significantly save computer time in cases with “few electrons”
and “large matrices (larger than 2000)”, is described in Sec. 7.2. It needs the case.vector file

52 CHAPTER 5. SHELL SCRIPTS

from the previous scf-iteration and this file is copied to case.vector.old when the -it switch is
set.

You can save computer time by performing the first scf-cycles without calculating the non-spherical
matrix elements in lapw1. This option can be set for N iterations with the -nohns N switch.

If you have a previous scf-calculation and changed lattice parameters or positions (volume opti-
mization or internal positions minimization), we recommend to use -renorm to renormalize the
density prior to the first iteration.

For magnetic systems which are difficult to converge you can use the script runfsm lapw -m M
(see section 4.5.3) for the execution of fixed-spin moment (FSM) calculations.

5.2 Utility scripts

5.2.1 Save a calculation (save lapw)

After self-consistency has been reached, the script

save lapw head of save filename

saves case.clmsum , case.scf , case.dmat , case.vorb and case.struct under the new
name and removes the case.broyd* files. Now you are ready to modify structural parameters
or input switches and rerun run lapw , or calculate properties like charge densities (lapw5), total
and partial DOS (tetra) or energy bandstructures (spaghetti).

For more complicated situations, where many parameters will be changed, we have extended
save lapw so that calculations can not only be saved under the head of save filename but
also a directory can be specified. If you use any of the possible switches (-a, -f, -d, -s) all input files
will be saved as well (and can be restored using restore lapw).

Options to save lapw can be seen with

save lapw -h

Currently the following options are supported
-h help
-a save all input files as well
-f force save lapw to overwrite previous saves
-d directory save calculation in directory specified
-s silent operation (no output)

5.2.2 Restoring a calculation (restore lapw)

To restore a calculation the script restore lapw can be used. This script restores the struct ,
clmsum , vorb and dmat files as well as all input files. Note: This script works only in conjunction
with the new scheme of save lapw, i.e. when you have saved a calculation in an extra directory.

Options to restore lapw are:
-h help
-f force restore lapw to overwrite previous files
-d directory restore calculation from directory specified
-s silent operation (no output)
-t only test which files would be restored

5.2. UTILITY SCRIPTS 53

5.2.3 Remove unnecessary files (clean lapw)

Once a case has been completed you can clean up the directory with this command. Only the most
important files (scf, clmsum, struct, input and some output files) are kept. It is very important to
use this command when you have finished a case, since otherwise the large vector and helpXX files
will quickly fill up all your disk space.

5.2.4 Generate case.inst (instgen lapw)

This script generates case.inst from a case.struct file. It can be used instead of the
“Structure-generator” of w2web. Note: the label “RMT” is necessary in case.struct .

5.2.5 scfmonitor lapw

This program was contributed by:

	
Hartmut Enkisch
Institute of Physics E1b
University of Dortmund
Dortmund, Germany
enkisch@pop.uni-dortmund.de
Please make comments or report problems with this program to the WIEN-mailinglist. If necessary, we will

communicate the problem to the authors.

A plot of some quantities from the case.scf file as specified on the commandline is generated
using the analyse program and GNUPLOT. This plot is updated in regular intervals.

For a description of how to use the script call it using

scfmonitor lapw -h

The scfmonitor can be directly called from w2web using the default monitoring parameters
(ENEand DIS)

In order to have a reasonable behavior of scfmonitor the GNUPLOT window should stay in back-
ground. This can be achieved by putting a line into your .Xdefaults file like:

gnuplot*raise: off

Note: It does not make sense to start MONITOR before the first cycle has finished because no case.scf
exists at this point.

5.2.6 Check parallel execution (testpara lapw)

testpara lapw is a small script which helps you to determine an optimal selection for the file
.machines for parallel calculations (see sec. 5.4).

5.2.7 Check parallel execution of lapw1 (testpara1 lapw)

testpara1 lapw is a small script which determines how far the execution of lapw1para has
proceeded.

54 CHAPTER 5. SHELL SCRIPTS

5.2.8 Check parallel execution of lapw2 (testpara2 lapw)

testpara2 lapw is a small script which determines how far the execution of lapw2para has
proceeded.

5.2.9 grepline lapw

Using

grepline lapw :label ’filename*.scf’ lines for tail or

grepline :label ’filename*.scf’ lines for tail

you can get a list of a quantity “:label ” (e.g. :ENE for the total energy) from several scf files at
once.

5.2.10 initso lapw

initso lapw helps you to initialize the calculations for spin-orbit coupling. In a spinpolarized
case SO may reduce symmetry or equivalent atoms may become non-equivalent, and the script
will help you to find proper symmetries and setup the respective input files. It is called using

initso lapw or

initso

and you should follow the instructions and explanations of the script.

Note: for some spin polarized systems, in particular without inversion symmetry, proper setup may be even
more difficult than suggested in this script.

5.2.11 oldvec2vec lapw

oldvec2vec lapw moves case.vector.old files to case.vector . This is useful if you used
the iterative diagonalization (run lapw -it) and now want to calculate qtl’s,.... It also works
automatically for the parallel case.

5.3 Structure optimization

5.3.1 Lattice parameters (Volume or c/a)

The auxilliary program optimize (x optimize) helps you to find the equilibrium volume or
c/a ratio. It generates from an already existing case.struct or case initial.struct a se-
ries of struct files with various volumes (c/a ratios) (depending on your input) and a shell-script
optimize.job which looks similar to:

#!/bin/csh -f
foreach i (\

tic_vol_-10.0 \
tic_vol__-5.0 \
tic_vol___0.0 \
tic_vol___5.0 \
tic_vol__10.0 \

)

5.3. STRUCTURE OPTIMIZATION 55

cp $i.struct tic.struct
cp $i.clmsum tic.clmsum
x dstart
run_lapw -ec 0.0001 -in1new 3 -in1orig -renorm

run_lapw -ec 0.0001
set stat = $status
if ($stat) then

echo "ERROR status in" $i
exit 1

endif
save_lapw $i

save_lapw -f -d XXX $i
end

You may modify this script according to your needs (use runsp lapw or even min lapw, specify dif-
ferent convergence parameters, save into a directory to separate e.g. “gga” and “lda” results, acti-
vate the line “x dstart ” or “ cp $i.clmsum case.clmsum ” to use a previously saved clmsum
file, e.g. from a calculation with smaller RKmax, ...)

Note: You must have a case.clmsum file (either from init lapw or from a previous scf calculation) in
order to run optimize.job .

Using the script grepline (or the “Analysis o Analyze multiple SCF-files” menu of w2web) you
get a summary of the total energy vs. volume (c/a). The file case.analysis can be used in
eplot lapw to find the minimum total energy and the equilibrium volume (c/a).

grepline :ENE ’*.scf’ 1 > case.analysis

Using such strategies also higher-dimensional optimizations (e.g. c/a ratio and volume) are possi-
ble in combination with the -d option of save lapw .

For the determination of elastic constants see the description of ELAST in sec 8.13.

5.3.2 Minimization of internal parameters (min lapw)

Most of the more complicated structures have free internal structural parameters, which can ei-
ther be taken from experiment or optimized using the calculated forces on the nuclei. The shell
script min lapw is provided which, together with the program mini , automatically determines
the equilibrium position of all individual atoms (obeying the symmetry constraints of a certain
space group). Note, that mini requires an input file case.inM (see Sec. 8.14). When you detect
large oszillations or too small changes of the forces during geometry optimization, you will have
to decrease/increase the DELTAs in this file and restart using the -I switch (or rm case.tmpM). The
last iteration of each geometry step is appended to case.scf mini , so that this file contains the
complete history of the minimization.

You can get help on its usage with:

min -h or min lapw -h

PROGRAM: min

USAGE: min [OPTIONS]

OPTIONS:
-j JOB -> job-file JOB (run_lapw -I -fc 1. -renorm)
-m -> extract force-input and execute mini (without JOB) and exit
-mo -> like -m but without copying of case.tmpM1 to case.tmpM
-h/-H -> help
-NI/-I -> without/with initialization of input-files
-i NUMBER -> max. NUMBER (50) of structure changes
-s NUMBER -> save_lapw after NUMBER of structure changes

CONTROL FILES:
.minstop stop after next structure change

56 CHAPTER 5. SHELL SCRIPTS

For instance for a spin-polarized case, which converges more difficultly, you would use:

min -j ‘‘runsp lapw -I -fc 1.0 -i 40’’

5.4 Running programs in parallel mode

This section describes two methods for running WIEN2k on parallel computers. One method, par-
allelizing k-points over processors, utilizes c-shell scripts. This method works with all standard
flavors of Unix without any special requirements. This parallelization was already available in
WIEN97 and is very efficient even on heterogeneous computing environments, e. g. on heteroge-
neous clusters of workstations, but also on dedicated parallel computers.

The other parallelization method, which comes new with WIEN2k, is based on fine grained meth-
ods. It is especially useful for large systems, if the required memory size is no longer available on
a single computer or in situations where more processors than k-points are available.

The k-point parallelization uses a dynamic load balancing scheme and is therefore often preferred
on heterogeneous compute environments and on networks of workstations or PCs, if interactive
users contribute to the processors’ work load. The fine grained parallelization method relies on
static load balancing, therefore, in a heterogeneous environment, the slowest processor sets the
pace. In many cases, a combination of both parallelization methods is favorable (always use k-
point parallelism if you have more than 1 k-point).

5.4.1 k-Point Parallelization

Parts of the code are executed in parallel, namely LAPW1, LAPWSO, LAPW2, LAPWDM,and OP-
TIC . These are the numerically intensive parts of most calculations.

Parallelization is achieved on the k-point level by distributing subsets of the k-mesh to different
processors and subsequent summation of the results. The implemented strategy can be used both
on a multiprocessor architecture and on a heterogeneous (even multiplatform) network.

To make use of the k-point parallelization, make sure that your system meets the following require-
ments:

NFS: All files for the calculation must be accessible under the same name and path. Therefore you
should set up your NFS mounts in such a way, that on all machines the path names are the
same.

Remote login: rlogin or ssh to all machines to be used must be possible without specifying a
password. Therefore you must either edit your .rhosts file to include all machines you
intend to use (not necessary for a shared memory machine), or correctly set up the directories
.ssh or .ssh2 .
Unfortunately the command for launching a remote shell is platform dependent, and can be
’rsh ’ or ’remsh ’. On some systems ’rsh’ refers to the restricted shell. Please check these
commands on your system and change the line

set remote = rsh or remsh or ssh

in the scripts lapw1para lapw , lapwsopara lapw , lapw2para lapw , lapwdm-
para lapw and opticpara lapw accordingly (In the following we use the shortcut without
lapw). This modification is done automatically by siteconfig lapw during installation

(see chapter 11).

5.4. PARALLEL EXECUTION 57

5.4.2 Fine grained parallelization

Fine grained parallel versions are available for the programs lapw0, lapw1, and lapw2 . This
parallelization method is based on parallelization libraries, including MPI, ScaLapack, and PBlas.
The required libraries are not included with WIEN2k. On parallel computers, however, they are
usually installed. Otherwise, free versions of these libraries are available1.

The parallelization affects the naming scheme of the executable programs: the fine grained par-
allel versions of lapw0/1/2 are called lapw0 mpi , lapw1[c] mpi , and lapw2[c] mpi . These
programs are executed by calls to the local execution environments, as in the sequential case, by
the scripts x, lapw0para, lapw1para, and lapw2 . On most computers this is done by calling
mpirun .

5.4.3 How to use WIEN2k as a parallel program

To start the calculation in parallel, a switch must be set and an input file has to be prepared by the
user.

I The switch -p switches on the parallelization in the scripts x , run lapw , and runsp lapw .
I In addition to this switch the file .machines has to be present in the current work directory.

In this file the machine names on which the parallel processes should be launched, and their
respective relative speeds must be specified.

If the .machines file does not exist, or if the -p switch is omitted, the serial versions of the pro-
grams are executed.

Generation of all necessary files, starting of the processes and summation of the results is done
by the appropriate scripts lapw1para , lapwsopara ,lapwdmpara and lapw2para (when using
-p), and parallel programs lapw0 mpi , lapw1 mpi , and lapw2 mpi (when using fine grained
parallelization has been selected in the .machines file).

5.4.4 The .machines file

The following .machines file describes a simple example. We assume to have 5 computers, (al-
pha, ... epsilon), where epsilon has 4, and delta and gamma 2 cpus. In addition, gamma, delta and
epsilon are 3 times faster than alpha and beta.:

This is a valid .machines file
#
granularity:1
1:alpha
1:beta
3:gamma:2 delta
3:delta:1 epsilon:4
residue:delta:2
lapw0:gamma:2 delta:2 epsilon:4

To each set of processors, defined by a single line in this file, a certain number of k-points is as-
signed, which are computed in parallel. In each line the weight (relative speed) and computers are
specified in the following form:

weight:machine name1:number1 machine name2:number2 ...

1http://www-unix.mcs.anl.gov/mpi/mpich , http://www.netlib.org/scalapack

58 CHAPTER 5. SHELL SCRIPTS

where weight is an integer (e.g. a three times more powerful machine should have a three times
higher weight). The name of the computer is machine name[1/2/...] , and the number of pro-
cessors to be used on these computers are number[1/2/...] . If there is only one processor on a
given computer, the :1 may be omitted. Empty lines are skipped, comment lines start with #.

Assuming there are 8 k-points to be distributed in the above example, they are distributed as fol-
lows. The computers alpha and beta get 1 each. Two processors of computer gammaand one pro-
cessor of computer delta cooperate in a fine grained parallelization on the solution of 3 k-points,
and one processor of computer delta plus four processors of computer epsilon cooperate on
the solution of 3 k-points. If there were additional k-points, they would be calculated by the first
processor (or set of processors) becoming available. With higher numbers of k-points, this method
ensures dynamic load balancing. If a processor is busy doing other (e. g., interactive) work, the
overall calculation will not stall, but most of its work will be done by other processors (or sets of
processors using MPI). This is, however, not an implementation for fail safety: if a process does
not terminate (e. g., due to shutdown of a computer) the calculation will never terminate. It is up
to the user to handle with such hardware failures by modifying the .machines file and restarting
the calculation at the appropriate point.

During the run of lapw1para the file .processes is generated. This file is used by lapw2para
to determine which case.vector* to read.

By default lapw1para will generate approximately 3 vector-files per processor, if enough k-points
are available for distribution. The factor 3 is called “granularity” and should allow some load
balancing in heterogeneous environments. If during siteconfig lapw a shared memory system
was selected, “granularity” will be set by default to 1.

For performance reasons a different “granularity” can be specified, by adding the line

granularity:new granularity

to the .machines file. In particular on shared memory machines it is advisable to add
a “residue machine” to calculate the surplus (residual) k-points (given by the expression
MOD(klist,

∑
j newweightj) and rely on the operating system’s load balancing scheme. Such a

“residue machine” is specified as

residue:machine name:number

in the .machines file.

Alternatively, it is also possible to distribute the remaining k-points one-by-one (and not in one
junk) over all processors. The option

extrafine:1

can be set in the .machines file. Note, each (set of) process(es) in the k-point parallelization gets
their own input files and creates a set of output files. To keep the number of files small, the number
for extrafine can be increased and the number for granularity can be decreased. The line

lapw0:gamma:2 delta:2 epsilon:4

defines the computers used for running lapw0 mpi . In this example the 6 processors of the com-
puters gamma, delta , and epsilon run lapw0 mpi in parallel.

If fine grained parallelization is used, each set of processors defined in the .machines file is con-
verted to a single file .machine[1/2/...] , which is used in a call to mpirun (or another parallel
execution environment).

5.4. PARALLEL EXECUTION 59

5.4.5 How the list of k-points is split

In the setup of the k-point parallel version of LAPW1 the list of k-points in case.klist (Note, that
the k-list from case.in1 cannot be used for parallel calculations) is split into subsets according to the
weights specified in the .machines file:

newweighti =

⌊
weighti ∗ klist

granularity ∗
∑
j weightj

⌋

where newweighti is the number of k-points to be calculated on processor i. newweighti is always
set to a value greater equal one.

A loop over all i processors is repeated until all k-points have been processed.

Speedup in a parallel program is intrinsically dependent on the serial or parallel parts of the code
according to Amdahl’s law:

speedup =
1

(1− P) + P
N

whereas N is the number of processors and P the percentage of code executed in parallel.

In WIEN2k usually only a small part of time is spent in the programs lapw0, lcore and mixer
which is very small (negligible) in comparison to the times spent in lapw1 and lapw2 . The time
for waiting until all parallel lapw1 and lapw2 processes have finished is important too. For a
good performance it is therefore necessary to have a good load balancing by estimating properly
the speed and availability of the machines used. We encourage the use of testpara lapw or “Utils.
o testpara” from w2web to check the k-point distribution over the machines before actually running
the programs in parallel.

While running lapw1 and lapw2 in parallel mode, the scripts testpara1 lapw (see 5.2.7) and
testpara2 lapw (see 5.2.8) can be used to monitor the succession of parallel execution.

5.4.6 Flow chart of the parallel scripts

To see how files are handled by the scripts lapw1para and lapw2para refer to figures 5.1 and
5.2. After the lapw2 calculations are completed the densities and the informations from the
case.scf2 x files are summarized by sumpara .

Note: parallel lapw2 and sumpara take two command line arguments, namely the case.def file but
also a number of processor indicator.

5.4.7 On the fine grained parallelization

The following parallel programs use different parallelization strategies:

lapw0 mpi is parallelized over the number of atoms. This method leads to good scalability as long
as there are more atoms than processors. For very many processors, however, the speedup
is limited, which is not at all critical, since the overall computing time of lapw0 mpi will be
nearly negligible.

lapw1 mpi uses a two-dimensional processor setup to distribute the Hamilton and overlap matri-
ces. For higher numbers of processors two-dimensional communication patterns are clearly
preferable to one-dimensional communication patterns.
Let us assume, for example, 64 processors. In a given processing step, one of these processors
has to communicate with the other 63 processors if a one-dimensional setup was chosen. In
the case of a two-dimensional processor setup it is usually sufficient to communicate with

60 CHAPTER 5. SHELL SCRIPTS

case.klist

case.vector_1
case.output_1

case.vector_2
case.output_2

case.vector_3
case.output_3

lapw1_2.def
case.klist_2

lapw1_1.def
case.klist_1

lapw1_3.def
case.klist_3

lapw1 lapw1_2.deflapw1 lapw1_1.def lapw1 lapw1_3.def

Figure 5.1: Flow chart of lapw1para

lapw2 lapw2.def 3
Calculate "Fermi"

sumpara sumpara.def 3

case.weigh_3case.weigh_2case.weigh_1

lapw2 lapw2_3.def 3lapw2 lapw2_1.def 1 lapw2 lapw2_2.def 2

case.clmval_1 case.clmval_2 case.clmval_3
case.scf2_3case.scf2_2case.scf2_1

case.scf
case.clmval

case.vector_3case.vector_2case.vector_1

Figure 5.2: Flow chart of lapw2para

5.5. GETTING ON-LINE HELP 61

the processors of the same processor row (7) or the same processor column (7), i. e. with 14
processors.
In some cases a price has to be paid for these preferable communication patterns: Assume
that 17 processors are available to calculate one k-point. In this case lapw1 mpi will choose a
4×4 processor setup, which leaves one processor to contribute only to the calculation of some
intermediate results.
In general the processor array P × Q is chosen as follows: P =

⌊√
number of processors

⌋
,

Q =
⌊

number of processors
P

⌋
.

lapw2 mpi is parallelized in two main parts: (i) each eigenvector is distributed evenly to all the
processors, and (ii) the fast fourier transform is done in parallel.

If more than one k-point is distributed at once to lapw1 mpi or lapw2 mpi , these will be treated
consecutively.

Depending on the parallel computer system and the problem size, speedups will vary in a wide
range. Running the fine grained parallelization over a 10 Mbit/s Ethernet network is not recom-
mended, even for large problem sizes.

5.5 Getting on-line help

As mentioned before, all WIEN2k csh-shell scripts have a “help“-switch -h, which gives a brief
summary of all options for the respective script.

To obtain online help on input-parameters, program description, . . . use

help lapw

which opens the pdf-version of the users guide (using acroread or what is defined in $PDF-
READER). You can search for a specific keyword using “∧f keyword”. This procedure substitutes
an “Index” and should make it possible to find a specific information without reading through the
complete users guide.

In addition there is a html-version of the UG and its starting page is:
$WIENROOT/SRCusersguide html/usersguide.html

When using the user interface w2web, the “Help” menu allows access to the html-version and to
help lapw (the latter requires an X-windows environment)..

5.6 Interface scripts

We have included a few “interface scripts” into the current WIEN2k distribution, to simplify the
previewing of results. In order to use these scripts the public domain program “gnuplot” has to be
installed on your system.

5.6.1 eplot lapw

The script eplot lapw plots total energy vs. volume or total energy vs. c/a-ratio using the file
case.analysis . The latter should have been created with grepline or the “Analysis o Analyze
multiple SCF-files” menu of w2web and the file names must be generated (or compatible) with
“optimize.job”.

For a description of how to use the script for batch like execution call the script using

eplot lapw -h

62 CHAPTER 5. SHELL SCRIPTS

5.6.2 dosplot lapw

The script dosplot lapw plots total or partial Density of States depending on the input used by
case.int and the interactive input.

For a description of how to use the script for batch like execution call the script using

dosplot lapw -h

5.6.3 specplot lapw

specplot lapw provides an interface for plotting X-ray spectra from the output of the xspec or
txspec program.

For a description of how to use the script for batch like execution call the script using

specplot lapw -h

5.6.4 rhoplot lapw

The script rhoplot lapw produces a surface plot of the electron density from the file case.rho
created by lapw5.

Note: To use this script you must have installed the C-program reformat supplied in SRCreformat .

5.6.5 opticplot lapw

The script opticplot lapw produces XY plots from the output files of the optics package us-
ing the case.joint , case.epsilon , case.eloss , case.sumrules or case.sigmak . For a
description of how to use the script for batch like execution call the script using

opticplot lapw -h

6 Programs for the initialization

Contents
6.1 NN . 63
6.2 SGROUP . 64
6.3 SYMMETRY . 64
6.4 LSTART . 65
6.5 KGEN . 67
6.6 DSTART . 67

In sections (6.1-6.6) we describe the initial utility programs. These programs are used to set up a
calculation.

6.1 NN (nearest neighbor distances)

This program uses the case.struct file (see 4.3) in which the atomic positions in the unit cell are
specified, calculates the nearest neighbor distances of all atoms, and checks that the corresponding
atomic spheres (radii) are not overlapping. If an overlap occurs, an error message is shown on
the screen. In addition, the next nearest-neighbor distances up to f times the nearest-neighbor
distance (f is provided interactively) are written to an output file named case.outputnn . It is
highly recommended in many cases that you change your sphere sizes and NOT use the default
of 2.0. An increase from 2.0 to 2.1 may already result in drastically reduced computing time. More
recommendations are given in chapter 4.3.

nn also checks if equivalent atoms are specified correctly in case.struct . At the bottom of
case.outputnn the coordination shell-structure is listed and from that a comparison with the
input is made verifying that equivalent atoms really have equivalent environments. If this is not the
case, an ERROR will be printed and a new structure file case.struct nn is generated. You have
to recheck your input and then decide whether you want to accept the new structure file, or reject
it (because the equivalency may just be an artefact due to a special choice of lattice parameters).
It also may be that you have made a simple input error. If you want to force two atoms of the
same kind (e.g. 2 Fe atoms) to be nonequivalent (e.g. because you want to do an antiferromagnetic
calculation), label the atoms as “Fe1” and “Fe2” in case.struct .

Thus this program helps to generate proper struct -files especially in the case of artificial unit
cells, e.g. a supercell simulating an impurity or a surface.

6.1.1 Execution

The program nn is executed by invoking the command:

nn nn.def or x nn

63

64 CHAPTER 6. INITIALIZATION

6.2 SGROUP

This program was contributed by:

	
Bogdan Yanchitsky and Andrei Timoshevskii
Institute of Magnetism, Kiev, Ukraine
email: yan@imag.kiev.ua and tim@ukron.kiev.ua
Please make comments or report problems with this program to the WIEN-mailinglist. If necessary, we will

communicate the problem to the authors.

It was published in Yanchitsky and Timoshevskii 2001, and is written in C.

This program uses information from case.struct (lattice type, lattice constants, atomic posi-
tions) and determines the spacegroup as well as all pointgroups of non-equivalent sites. It uses
the nuclear charges Z or the ”label” in the 3rd place of the atomic name (Si1, Si2) to distinguish
different atoms uniquely. It is able to find possible smaller unit cells, shift the origin of the cell and
can even produce a new struct file case.struct sgroup based on your input case.struct
with proper lattice types and equivalency. It is thus most usefull in particular for “handmade”
structures.

For more information see also the README in SRC sgroup.

6.2.1 Execution

The program sgroup is executed by invoking the command:

sgroup -wi case.struct [-wo case.struct sgroup] case.outputsgen
or x sgroup

6.3 SYMMETRY

This program uses information from case.struct (lattice type, atomic positions). If NSYM was
set to zero it generates the space group symmetry operations and writes them to case.struct st
to complete this file. Otherwise (NSYM > 0) it compares the generated symmetry operations
with the already present ones. If they disagree a warning is given in the output. In addition
the point group of each atomic site is determined and the respective symmetry operations and
LM values of the lattice harmonics representation are printed. The latter information is written
into case.in2 sy , while the local rotation matrix, the positive or negative IATNR values and the
proper ISPLIT parameter are written to case.struct st . (See appendix A and Sec. 4.3).

6.3.1 Execution

The program symmetry is executed by invoking the command:

symmetry symmetry.def or x symmetry

6.4. LSTART 65

6.4 LSTART (atomic LSDA program)

lstart is a relativistic atomic LSDA code originally written by Desclaux (69, 75) and modified
for the present purpose. Internally it uses Hartree atomic units, but all output has been converted
to Rydberg units. lstart generates atomic densities which are used by dstart to generate a
starting density for a scf calculation and all the input files for the scf run: in0 , in1 , in2 , inc
and inm (according to the atomic eigenvalues). In addition it creates atomic potentials (which
are truncated at their corresponding atomic radii and could be used to run lapw1) and optional
atomic valence densities, which can be used in lapw5 for a difference density plot. The atomic
total energies are also printed, but it can only be used for cohesive energy calculations of light
elements. Already for second-row elements the different treatment of relativistic effects in lstart
and lapwso yields inconsistent data and you must calculate the atomic total energy consistently
by a supercell approach via a “bandstructure calculation (Put a single atom in a sufficiently large
fcc-type unit cell).

If the program stops with some lines:

NSTOP=

in case.outputst , this means, that a proper solution for at least one orbital could not be ob-
tained. In such a case the input must be changed and one should provide different occupation
numbers for these states (e.g. Cu can not be started with 3d104s1, but it works with 3d94s2).

Warnings about the radial mesh can usually be ignored. They can be avoided by larger dimension
parameters NPT and NPT00, so that the radial mesh will reach up to RMAX0.

6.4.1 Execution

The program lstart is executed by invoking the command:

lstart lstart.def or x lstart

The files case.rsp(up |dn) are generated and contain the atomic (spin) densities, which will be
used by DSTART later on.

6.4.2 Dimensioning parameters

The following parameters are defined in file param.inc (static and not allocatable arrays):

NPT total number of radial mesh points, must be gt.(NRAD+NPT00), where NRAD is
the number of mesh-points up to RMT specfied in case.struct.

NPT00 max. number of radial mesh points beyond RMT
RMAX0 max. distance of radial mesh

6.4.3 Input

When running lstart you will first be asked interactively to specify an XC-potential switch. Cur-
rently 5 (LSDA, Perdew and Wang 92) as well as 13 and 14 (two GGAs, Perdew et al. 96 and Perdew
et al. 92, respectively) are officially supported, but 13 is recommended.

In addition the program asks for an energy cut-off, separating core from valence states. Usually
-6.0 Ry is a good choice, but you should check for each atom how much core charge leaks out of

66 CHAPTER 6. INITIALIZATION

the sphere (bottom of case.outputs). If this is the case one should lower this energy cut-off and
thus include these low lying states into the valence region.

The rest of the input is described in the sample input below.

Note: Only the data at the beginning of the line are read whereas the comment describes the respective
orbitals. This file can be generated automatically in w2web using “RunProgramso Struct Generator”
or with the script instgen lapw . To edit this file by hand choose “View/Edit o Input Files” and
choose case.inst .

------------------ top of file: case.inst -------------------
ZINC

Ne 6 (inert gas, # OF VALENCE ORBITALS not counting spin)
3,-1,1.0 N (N,KAPPA,OCCUP; = 3S UP, 1 ELECTRON)
3,-1,1.0 N 3S DN
3,-2,2.0 N 3P UP
3,-2,2.0 N 3P DN
3, 1,1.0 N 3P*UP
3, 1,1.0 N 3P*DN
3,-3,3.0 P 3D UP
3,-3,3.0 P 3D DN
3, 2,2.0 P 3D*UP
3, 2,2.0 P 3D*DN
4,-1,1.0 P 4S UP
4,-1,1.0 P 4S DN
**** END OF Input
**** END OF Input
------------------- bottom of file ---------------------------

Interpretive comments follow:

line 1: format(a20) title
line 2: free format

config

config specifies the core state configuration by an inert gas (He, Ne, Ar, Kr,
Xe, Rn) and the number of (valence) orbitals (without spin). (In the
example given above one could also use Ar 3 and omit the 3s and 3p
states.) The atomic configurations are listed in the appendix and can
also be found online using periodic table , a shell script which dis-
plays SRC/periodic.ps with ghostview)

line 3: format(i1,1x,i2,1x,f5.3,a1)
n, kappa, occup, plot

n the principle quantum number
kappa the relativistic quantum number (see below)
occup occupation number (per spin)
plot P specifies that the density of the respective orbital is written to the file

case.sigma , which can be used for difference density plots in lapw5 .
N or an empty field will exempt density of the respective orbital from
being printed to file.

>>>:line 3 is repeated for the other spin and for all orbitals specified above by config.
>>>: the last two lines must be

The quantum numbers are defined as follows (see e.g. Liberman et al 65):

Spin quantum number: s = +1 or s = −1

6.6. DSTART 67

Orbital quantum number j = l + s/2

Relativistic quantum number κ = −s(j + 1/2)

j = l + s/2 κ max. occupation
l s = −1 s = +1 s = −1 s = +1 s = −1 s = +1

s 0 1/2 -1 2
p 1 1/2 3/2 1 -2 2 4
d 2 3/2 5/2 2 -3 4 6
f 3 5/2 7/2 3 -4 6 8

Table 6.4: Relativistic quantum numbers

6.5 KGEN (generates k mesh)

This program generates the k-mesh in the irreducible wedge of the Brillouin zone (IBZ) on a special
point grid, which can be used in a modified tetrahedron integration scheme (Blöchl et al 1994).

kgen needs as interactive input the total number of k-points in the BZ and, if inversion symmetry
is not present, asks whether or not it should include this symmetry when generating the k-mesh.
One should usually add inversion here except for certain magnetic cases including SO interaction.
If symmetry permits, it further asks whether or not the k-mesh should be shifted away from high
symmetry directions. The file case.klist is used in lapw1 and case.kgen is used in tetra
and lapw2 , if the EF switch is set to TETRA, i.e. the tetrahedron method for the k-space integration
is used. For the format of the case.klist see page 75.

6.5.1 Execution

The program kgen is executed by invoking the command:

kgen kgen.def or x kgen

6.5.2 Dimensioning parameters

The following parameters are used in main.f (static arrays):

IDKP number of inequivalent k-points (like NKPT in other programs)
NWX internal parameter, must be increased for very large k-meshes

6.6 DSTART (superposition of atomic densities)

This program generates an initial crystalline charge density case.clmsum by a superposition of
atomic densities (case.rsp) generated with lstart . Information about LM values of the lattice
harmonics representation and number of Fourier coefficients of the interstitial charge density are
taken from case.in1 and case.in2 . In the case of a spin-polarized calculation it must also be
run for the spin-up charge density case.clmup and spin-down charge density case.clmdn .

68 CHAPTER 6. INITIALIZATION

6.6.1 Execution

The program dstart is executed by invoking the command:

dstart dstart.def or x dstart [-up|dn -c]

6.6.2 Dimensioning parameters

The following parameters are collected in file param.inc , but usually need not to be changed:

IPINST number of r-mesh points beyond Rmt (should be NPT00 as in LSTART)
NCOM number of LM terms in density
NRAD number of radial mesh points
NSYM order of point group

7 Programs for running an SCF cycle

Contents

7.1 LAPW0 . 69
7.2 LAPW1 . 71
7.3 LAPWSO . 75
7.4 LAPW2 . 77
7.5 SUMPARA . 81
7.6 LAPWDM . 81
7.7 ORB . 83
7.8 LCORE . 86
7.9 MIXER . 88

In sections 7.1-7.9 we describe the main programs to run an SCF cycle as illustrated in figure 4.1.

7.1 LAPW0 (generates potential)

lapw0 computes the total potential Vtot as the sum of the Coulomb Vc and the exchange-correlation
potential Vxc using the total electron (spin) density as input. It generates the spherical part (l=0)
as case.vsp and the non-spherical part as case.vns . For spin-polarized systems, the spin-
densities case.clmup and case.clmdn lead to two pairs of potential files. These files are called:
case.vspup , case.vnsup and case.vspdn , case.vnsdn .

The Coulomb potential is calculated by the multipolar Fourier expansion introduced by Weinert
(81). Utilizing the spatial partitioning of the unit cell and the dual representation of the charge den-
sity [equ. 2.10], firstly the multipole moments inside the spheres are calculated (Q-sp). The Fourier
series of the charge density in the interstitial also represent SOME density inside the spheres, but
certainly NOT the correct density there. Nevertheless, the multipole moments of this artificial
plane-wave density inside each sphere are also calculated (Q-pw). By subtracting Q-pw from Q-sp
one obtains pseudo-multipole moments Q. Next a new plane-wave series is generated which has
two properties, namely zero density in the interstitial region and a charge distribution inside the
spheres that reproduces the pseudo-multipole moments Q. This series is added to the original in-
terstitial Fourier series for the density to form a new series which has two desirable properties: it
simultaneously represents the interstitial charge density AND it has the same multipole moments
inside the spheres as the actual density. Using this Fourier series the interstitial Coulomb potential
follows immediately by dividing the Fourier coefficients by K2 (up to a constant).

Inside the spheres the Coulomb potential is obtained by a straightforward classical Green’s func-
tion method for the solution of the boundary value problem.

The exchange-correlation potential is computed numerically on a grid. Inside the atomic spheres a
least squares procedure is used to reproduce the potential using a lattice harmonics representation

69

70 CHAPTER 7. SCF CYCLE

(the linear equations are solved with modified LINPACK routines). In the interstitial region a 3-
dimensional fast Fourier transformation (FFT) is used.

The total potential V is obtained by summation of the Coulomb VC and exchange-correlation po-
tentials Vxc.

In order to find the contribution from the plane wave representation to the Hamilton matrix el-
ements we reanalyze the Fourier series in such a way that the new series represents a potential
which is zero inside the spheres but keeps the original value in the interstitial region.

The contribution to the total energy which involves integrals of the form ρ ∗V is calculated accord-
ing to the formalism of Weinert et al (82).

The Hellmann-Feynman force contribution to the total force is also calculated (Yu et al 91).

Finally, the electric field gradient (EFG) is calculated in case you have an L=2 term in the density
expansion. The EFG tensor is given in both, the “local-rotation-matrix” coordinate system, and
then diagonalized. The resulting eigenvectors of this rotation are given by columns.

For surface calculations the total and electrostatic potential at z=0 and z=0.5 is calculated and can
be used as energy-zero for the determination of the workfunction. (It is assumed that the middle
of your vacuum region is either at z=0 or z=0.5).

7.1.1 Execution

The program lapw0 is executed by invoking the command:

lapw0 lapw0.def or x lapw0

7.1.2 Dimensioning parameters

The following parameters are used (they are collected in file param.inc , but usually need not to
be changed:

NCOM number of lm components in charge density and potential representation; it must
satisfy the following condition: NCOM+3 .gt. {[number of l,m with m = 0] + [2
* number of l,m with m > 0]}

NRAD number of radial mesh points
NSTD defines the angular grid points used in fitting the xc-potential inside spheres
LMAX1D defines the angular grid points used in fitting the xc-potential inside spheres
LMAX2 highest L in the LM expansion of charge and potential
NSYM order of point group

7.1.3 Input

The input is very simple. It is generated automatically by init lapw , and needs to be changed
only if a different exchange-correlation potential should be used:

------------------ top of file: case.in0 --------------------
TOT 13 MULT/COUL/EXCH/POT /TOT ; VXC-SWITCH
NR2V (R2V / NR2V)
0 0.0 (#of FK in E-field expansion, EFELD (Ry)
0 (list of K-vectors)

------------------- bottom of file ---------------------------

Interpretive comments follow:

7.2. LAPW1 71

line 1: format(A4,I4)
switch, indxc

switch
TOT total energy contributions and total potential calculated
POT total potential is calculated, but not the total energy
MULT multipole moments calculated only
COUL Coulomb potential calculated only
EXCH exchange correlation potential calculated only

NOTE: MULT, COUL, and EXCH are for testing only, whereas POT,
saves some CPU time if total energy is not needed

indxc index to specify type of exchange and correlation potential. Supported
options include:

1 Moruzzi, Janak, Williams(78)
5 Perdew and Wang 92, reparameterization of Ceperly-Alder data, the

recommended LDA option
13 Generalized Gradient approximation (Perdew-Bourke-Ernzerhof 96)
14 Generalized Gradient approximation (Perdew-Wang 91)
12 Meta GGA (Perdew et al. 2000). You must have a case.inm vresp

file without renormalization to generate the required input files for this
option. In addition you must use a very large GMAX (24).

line 2: format(A4)
option

NR2V no additional output
R2V Exchange-correlation (case.r2v), Coulomb and total potentials

(case.vcoul) are written as (r2V) to a file for plotting with lapw5

The following 2 lines are optional and can be omitted. They are used to introduce an electric
field via a zig-zag potential (see J.Stahn et al. 2000):

line 3: free format
IEFIELD, EFIELD

IEFIELD number of Fourier coefficients to model the zig-zag potential
EFIELD value of the electric field (mRy)

Please note: The zig-zag potential is only implemented for the LDA
functionals.

line 4: free format

KFIELD Indices of K-vectors to be used in the zig-zag E-field description. I.e.:
2,3,4 means that you model this field by using the 2-4 th K-vector in
case.clmsum , which are usually vectors like (0,0,1), (0,0,2),...)

7.2 LAPW1 (generates eigenvalues and eigenvectors)

lapw1 sets up the Hamiltonian and the overlap matrix (Koelling and Arbman 75) and finds by
diagonalization eigenvalues and eigenvectors which are written to case.vector . Besides the
standard LAPW basis set, also the APW+lo method (see Sjöstedt et al 2000, Madsen et al. 2001) is
supported and the basis sets can be mixed for maximal efficiency. If the file case.vns exists (i.e.
non-spherical terms in the potential), a full-potential calculation is performed.

72 CHAPTER 7. SCF CYCLE

For structures without inversion symmetry, where the hamilton and overlap matrix elements are
complex numbers, the corresponding program version lapw1c must be used in connection with
lapw2c .

Since usually the diagonalization is the most time consuming part of the calculations, several op-
tions exist here. In WIEN2k we include highly optimized modifications of LAPACK routines. We
call all these routines “full diagonalization”, but we also provide an option to do an “iterative diag-
onalization” using a block-Davidson method (see Singh 89). This scheme starts from an old eigen-
vector (previous scf-iteration), needs additional memory and produces only approximate eigenval-
ues/vectors, but can be significantly faster than LAPACK, in particular if the ratio of matrix size
to number of relevant (e.g. occupied) eigenvalues is large. In any case, it is recommended that
convergence is checked by another scf-iteration with “full diagonalization”. Often the best perfor-
mance can be obtained by first running to a crude convergence, next doing a “full diagonalization”
and finally continuing iteratively to self consistency. (e. g. use first: run lapw -it -fc 10 and
then run lapw -it -fc 1)

Parallel execution (fine grain and on the k-point level) is also possible and is described in detail in
Sec. 5.4.

7.2.1 Execution

The program lapw1 is executed by invoking the command:

x lapw1 [-c -up|dn -it -p -nohns -orb] or

lapw1 lapw1.def or lapw1c lapw1.def

In cases without inversion symmetry, the default input filename is case.in1c . For semi-core
calculations the lapw1s.def file uses a case.in1s file and creates the files case.output1s
and case.vectors . For the spin-polarized case lapw1 is called twice with uplapw1.def and
dnlapw1.def . To all relevant files the keywords “up“ or “dn“ are appended (see the fcc Ni test
case in the WIEN2k package). The switch -nohns skips the calculation of the nonspherical matrix
elements inside the sphere. This may be used to save computer time during the first scf cycles.

7.2.2 Dimensioning parameters

The following parameters (collected in file param.inc r or param.inc c) are used:

KMAX1START a first guess for the largest h,k,l Fourier components of the potential
KMAX2START
KMAX3START
LMAX highest l+1 in basis function inside sphere (consistent with input in case.in1)
LMMX number of LM terms in potential (should be at least NCOM-1)
LOMAX highest l for local orbital basis (consistent with input in case.in1)
NGAU number of Gaunt coefficients for the non-spherical contributions to the matrix

elements
NKPTSTART a starting guess for the total number of k-points in irreducible wedge of Brillouin

zone
NMATMAX maximum size of H,S-matrix (defines size of program, should be chosen accord-

ing to the memory of your hardware!)
NRAD number of radial mesh points
NSLMAX highest l+1 in basis functions for non-muffin-tin matrix elements (consistent with

input in case.in1)
NSYM order of point group
NUME maximum number of energy eigenvalues per k-point
NVEC1 defines the largest triple of integers which define reciprocal
NVEC2 K-vectors when multiplied with the reciprocal Bravais matrix
NVEC3
NLOAT max number of LOs for one l-quantum number

7.2. LAPW1 73

7.2.3 Input

Below a sample input is shown for TiO2 (rutile), one of the test cases provided in the WIEN2k
package. The input file is written automatically by LSTART, but was modified to set APW only for
Ti-3d and O-2p orbitals. In addition UNIT was changed to 5 and k-points where inserted by hand
for bandstructure plotting.

------------------ top of file: case.in1 --------------------
WFFIL (WFPRI,WFFIL,SUPWF ; wave fct. print,file,suppress

7.500 10 4 (R-mt*K-max; MAX l, max l for hns)
0.30 5 0 (global energy parameter E(l), with 5 other choices, LAPW)

0 -3.00 0.020 CONT 0 ENERGY PARAMETER for s, LAPW
0 0.30 0.000 CONT 0 ENERGY PARAMETER for s-local orbital, LAPW-LO
1 -1.90 0.020 CONT 0 ENERGY PARAMETER for p LAPW
1 0.30 0.000 CONT 0 ENERGY PARAMETER for p-local orbitals LAPW-LO
2 0.20 0.020 CONT 1 APW

0.20 3 0 (global energy parameter E(l), with 1 other choice, LAPW)
0 -0.90 0.020 STOP 0 LAPW
0 0.30 0.000 CONT 0 LAPW-LO
1 0.30 0.000 CONT 1 APW

K-VECTORS FROM UNIT:5 -9.0 1.5 IUNIT, Emin, Emax
GAMMA 0 0 0 2 1.00

0 0 1 10 2.00
0 0 2 10 2.00
0 0 3 10 2.00
0 0 4 10 2.00

Z 0 0 5 10 1.00
END
------------------- bottom of file ------------------------

Interpretive comments follow:

line 1: format(A5)
switch

WFFIL standard option, writes wave functions to file case.vector (needed
in lapw2)

SUPWF suppresses wave function calculation (faster for testing eigenvalues
only)

WFPRI prints eigenvectors to case.output1 and writes case.vector (pro-
duces long outputs!)

line 2: free format
rkmax, lmax, lnsmax

rkmax Rmt ∗ Kmax determines matrix size (convergence), where Kmax is the
plane wave cut-off, Rmt is the smallest of all atomic sphere radii. Usu-
ally this value should be between 5 and 9 (APW+lo) or 6 - 10. (LAPW-
basis) (K2

max would be the plane wave cut-off parameter in Ry used
in pseudopotential calculations.) Note that d (f) wavefunctions con-
verge slower than s and p. For systems including hydrogen with short
bondlength and thus a very small Rmt (e.g. 0.7 a.u.), RKmax = 3 might
already be reasonable, but convergence must be checked for a new type
of system.
Note, that the actual matrix size is written on case.scf1. It is determined
by whatever is smaller, the plane wave cut-off (specified with RKmax)
or the maximum matrix dimension NMATMAX, (see previous section).

lmax maximum l value for partial waves used inside atomic spheres (should
be between 8 and 12)

lnsmax maximum l value for partial waves used in the computation of non-
muffin-tin matrix elements (lnsmax=4 is quite good)

74 CHAPTER 7. SCF CYCLE

line 3: free format
Etrial, ndiff, Napw

Etrial default energy used for all El to obtain ul(r, El) as regular solution of
the radial Schrödinger equation [used in equ.2.4,2.7] (see figure 7.1).

ndiff number of exceptions (specified in the next ndiff lines)
Napw 0 ... use LAPW basis, 1 ... use APW-basis for all “global” l values of this

atom. We recommend to use LAPW here.

line 4: format(I2,2F10.5,A4)
l, El, de, switch, NAPWL

l l of partial wave
El El for L=l
de energy increment

de=0: this E(l) overwrites the default energy (from line 3)
de6= 0: a search for a resonance energy using this increment is done. The
radial function ul(r, E) up to the muffin-tin radius RMT varies with the
energy. A typical case is schematically shown in Fig. 7.1.
At the bottom of the energy bands u has a zero slope (bonding state),
but it has a zero value (antibonding state) at the top of the bands. One
can search up and down in energy starting with El using the increment
de to find where ul(RMT , E) changes sign in value to determine Etop
and in slope to specify Ebottom. If both are found El is taken as the
arithmetic mean and replaces the trial energy. Otherwise El keeps the
specified value. For Etop and Ebottom bounds of +1 and -10 Ry are de-
fined respectively, and if they are not found, they remain at the initial
value set to -200.

switch used only if de.ne.0
CONT calculation continues, even if either Etop or Ebottom are not found
STOP calculation stops if not both Etop and Ebottom are found (especially use-

ful for semi-core states)
NAPWL 0 ... use LAPW basis, 1 ... use APW-basis for this l value of this atom. We

recommend to use APW+lo when the corresponding wavefunction is
“localized” and thus difficult to converge with standard LAPW (like 3d
functions) and/or when the respective atomic sphere is small compared
to the other spheres in the unit cell.

>>>:line 4 is repeated ndiff times (see line 3) for each exception. If the same l value is specified
twice, local orbitals are added to the (L)APW basis. The first energy (E1) is used for the usual
LAPW’s and the second energy (E2) for the LOs, which are formed according to (see equ.
2.7): uE1 + u̇E1 + uE2 .
Note: You may change the automatically created input and add d- or f-local orbitals to reduce the
linearization error (e.g. in late transition metals you could put E3d at 0.0 and 1.0 Ry) or s, p, d, and/or
f-LOs at very high energy (e.g. 2.0 - 3.0 Ry) to better describe unoccupied states. This input is also
adapted during scf when -in1new is specified, while the original in1 file is saved in case.in1 orig .

>>>:lines 3 and 4 are repeated for each non equivalent atom

7.3. LAPWSO 75

l

Etop

Ebottom

Ebottom

El

Etop

u (r,E)l

RMT

E

DOS
r

E

Figure 7.1: Schematic dependence of DOS and ul(r, El) on the energy

line 5: format (20x,i1,2f10.1)
unit-number, Emin, Emax

unit-
number

file number from which the k-vectors in the irreducible wedge of the
Brillouin zone are read. 5 specifies the input file itself (as shown in
the example), default is 4, for which the corresponding information is
contained in case.klist (generated by KGEN).

EMIN,
EMAX

energy window in which eigenvalues shall be searched (overrides set-
ting in case.klist . A small window saves computer time, but it also
limits the energy range for the DOS calculation of unoccupied states.

line 6: format (A10,4I5,3F5.2)
name, ix,iy,iz, idv, weight

name name of k-vector (optional)
>>>: the last line must be END !!

ix,iy,iz,
idv

defines the k-vector in units of 2π/a, 2π/b, 2π/c, where x= ix/idv etc.

weight of k-vector (order of group of k)

>>>: line 6 is repeated for each k-vector in the IBZ, but Emin and Emax may be omitted after the
first k point. The utility program kgen (see section 6.5) provides a list of such vectors (on a
tetrahedral mesh) in case.klist .

>>>: the last line must be END

7.3 LAPWSO (adds spin orbit coupling)

lapwso includes spin-orbit (SO) coupling in a second-variational procedure and computes eigen-
values and eigenvectors (stored in case.vectorso) using the scalar-relativistic wavefunctions
from lapw1 . For reference see Singh 94 and Novák 97. The SO coupling must be small, as it is
diagonalized in the space of the scalar relativistic eigenstates. For large spin orbit effects it might
be necessary to include many more eigenstates from lapw1 by increasing EMAX in case.in1 (up
to 10 Ry!). We also provide an additional basisfunction, namely an LO with a p1/2 radial wave-
function, which improves the basis and removes to a large degree the dependency of the results
on EMAX and RMT (see Kuneš et al. 2001). SO is considered only within the atomic spheres and
thus the results may depend to some extent on the choice of atomic spheres radii. The nonspherical
potential is neglected when calculating dV

dr .

76 CHAPTER 7. SCF CYCLE

In spin-polarized calculations the presence of spin-orbit coupling can split equivalent atoms into
non-equivalent ones or at least may lower the symmetry of the system. It is then necessary to
consider a larger part of the Brillouin zone and the input for lapw2 should also be modified since
the potential has lower symmetry than in the non-relativistic case. The following inputs must be
changed:

I case.struct
I case.klist
I case.kgen
I case.in2c
I case.in1

We recommend to use initso (see Sec.5.2.10) which helps you to setup spinorbit calculations, but
in some cases an even more complicated procedure might be necessary.

Note: SO eigenvectors are complex and thus lapw2c must be used in a selfconsistent calculation.

7.3.1 Execution

The program lapwso is executed by invoking the command:

x lapwso [-up -p -c] or
lapwso lapwso.def

where here -up indicates a spin-polarized calculation (no “-dn” is needed, since spin-orbit will mix
spin-up and dn states in one calculation).

7.3.2 Dimensioning parameters

The following parameters are used (collected in file param.inc):

FLMAX constant = 3
LMAX highest l of wave function inside sphere (consistent with lapw1)
LABC highest l of wave function inside sphere where SO is considered
LOMAX max l for local orbital basis
NRAD number of radial mesh points
NLOAT number of local orbitals

7.3.3 Input

A sample input for lapwso is given below. It will be generated automatically by initso

------------------ top of file: case.inso --------------------
WFFIL

4 0 0 llmax,ipr,kpot
-10.0000 1.5000 Emin, Emax

0 0 1 h,k,l (direction of magnetization)
1 number of RLO

1 -3.5 0.005 STOP E-param for RLO
------------------- bottom of file ------------------------

Interpretive comments on this file are as follows:

line 1: format(A5)

7.4. LAPW2 77

switch

WFFIL wavefunctions will also be calculated for scf-calculation. Otherwise
only eigenvalues are calculated.

line 2: free format
LLMAX, IPR, KPOT

LLMAX maximum l for wavefunctions
IPR print switch, larger numbers give additional output
KPOT 0 V(dn) potential is used for < dn|V |dn > elements, V(up) for

< up|V |up > and [V(dn)+V(up)]/2 for < up|V |dn >.
1 averaged potential used for all matrix elements.

line 3: free format
Emin, Emax

Emin minimum energy for which the output eigenvectors and eigenenergies
will be printed (Ry)

Emax maximum energy

line 4: free format

h,k,l vector describing the direction of magnetization

line 5: free format

nlr number of p1/2 LOs for this atom

line 6: free format
l, El, de, switch

l l of relativistic LO
El El for L=l
de energy increment (see lapw1)
switch used only if de.ne.0

CONT calculation continues, even if either Etop or Ebottom are not found
STOP calculation stops if not both Etop and Ebottom are found (especially use-

ful for semi-core states)

>>>: line 5 and 6 are repeated for each atom in the cell.

7.4 LAPW2 (generates valence charge density expansions)

lapw2 uses the file case.vector and computes the Fermi-energy and the expansions of the elec-
tronic charge densities in a representation according to eqn. 2.10 for each occupied state and each
k-vector; then the corresponding (partial) charges inside the atomic spheres are obtained by inte-
gration. The partial charges for each state (energy eigenvalue) and each k-vector are written to
files case.help31 , case.help32 etc., where the last digit gives the atomic index of inequivalent
atoms. In addition “Pulay-corrections“ to the forces at the nuclei are calculated here. For systems
without inversion symmetry you have to use the program lapw2c (in connection with lapw1c).

78 CHAPTER 7. SCF CYCLE

7.4.1 Execution

The program lapw2 is executed by invoking the command:

x lapw2 [-c -up|dn -p -so -qtl -fermi] or
lapw2 lapw2.def [proc#] or lapw2c lapw2.def [proc#]

where proc# is the i-th processor number in case of parallel execution (see Fig. 5.2). The -so switch
sets -c automatically.

For each inequivalent atom a file case.helpXX is defined, starting with XX=31. For complex
calculations case.in2c is used, for semi-core calculations lapw2s.def differs from the regu-
lar file lapw2.def only in few points, namely case.in2 must be replaced by case.in2s and
case.clmval by case.clmsc . For a spin-polarized case see the fcc Ni test case in the WIEN2k
package.

7.4.2 Dimensioning parameters

The following parameters are used (collected in file param.inc):

IBLCK Blocking parameter (32-255) in fourier.frc , optimize for best performance
IBLOCK Blocking parameter (32-255) in l2main.frc , optimize for best performance
LMAX2 highest l in wave function inside sphere (smaller than in lapw1 , at present must

be .le. 6)
LOMAX max l for local orbital basis
NCOM number of LM terms in density
NGAU max. number of Gaunt numbers
NRAD number of radial mesh points

7.4.3 Input

A sample input for lapw2 is listed below, it is generated automatically by the programs lstart
and symmetry .

------------------ top of file: case.in2 --------------------
TOT (TOT,FOR,QTL,EFG)
-1.2 32.000 0.5 0.05 (EMIN, # of electrons,ESEPERMIN, ESEPER0)
TETRA 0.0 (EF-method (ROOT,TEMP,GAUSS,TETRA,ALL),value)

0 0 2 0 2 2 4 0 4 2 4 4
0 0 1 0 2 0 2 2 3 0 3 2 4 0 4 2 4 4

14.0 (GMAX)
FILE (NOFILE, optional)
------------------- bottom of file ------------------------

Interpretive comments on this file are as follows:

line 1: format(A5)
switch

TOT total valence charge density expansion inside and outside spheres
FOR same as TOT, but in addition a “Pulay” force contribution is calculated

(this option costs extra computing time and thus should be performed
only at the final scf cycles, see run lapw script in sec. 5.1.3)

QTL partial charges only (generates file case.qtl for DOS calculations)
EFG computes decomposition of electric field gradient (EFG), contributions

from inside spheres (the total EFG is computed in lapw0).

7.4. LAPW2 79

CLM CLM coefficients only
FERMI Fermi energy only, this produces weight files for parallel execution and

for the optics package.
>>>: TOT and FOR are the standard options, QTL is used for density of states

(or energy bandstructure) calculations, EFG for analysis, while FOURI,
CLM are for testing only.

line 2: free format
emin, ne, esepermin, eseper0

emin lower energy cut-off for defining the range of occupied states
ne number of electrons (per unit cell) in that energy range
esepermin LAPW2 tries to find the “mean” energies for each l channel, for both the

valence and the semicore states. To define “valence” and “semicore” it
starts at (EF - “esepermin”) and searches for a “gap” with a width of
at least “eseper0” and defines this as seperation energy of valence and
semicore

eseper0 minimum gap width (see above). The values esepermin and eseper0
will only influence results if the option -in1new is used

line 3: format(a5,f10.5)
efmod, eval

efmod determines how EF is determined
ROOT EF is calculated and k space integration is done by root sampling (this

can be used for insulators, but for metals poor convergence is found)
TEMP EF is calculated where each eigenvalue is temperature broadened us-

ing a Fermi function with a broadening parameter of eval Ry. (e.g.
eval=0.002 gives good total energy convergence, but has no “physical“
justification).

GAUSS EF is calculated as above but a Gaussian smearing method is used with
a width of eval Ry. (e.g. eval=0.002 gives good total energy conver-
gence, but has no “physical“ justification).

TETRA EF is calculated and k space integration is done by the modified (if eval
is .lt. 100) or standard (eval .gt. 100) tetrahedron-method (Blöchl 94).
This “standard” scheme is recommended for optic . In this case the
file case.kgen , consistent with the k-mesh used in lapw1 , must be
provided (see Sec. 7.2). This is the recommended option although con-
vergence may be slower than with Gauss- or temperature-smearing.

ALL All states up to eval are used. This can be used to generate charge den-
sities in a specified energy interval.

eval when efmod is set to TEMP or GAUSS, eval specifies the width of the
broadening (in Ry), if efmod is set to ALL, eval specifies the upper limit
of the energy window, if efmod is set to TETRA, eval .gt. 100 specifies
the use of the standard tetrahedron method instead of the modified one
(see above).

line 4: format (20I2)

80 CHAPTER 7. SCF CYCLE

L,M LM values of lattice harmonics expansion (equ. 2.10), defined accord-
ing to the point symmetry of the corresponding atom; generated in
SYMMETRY, MUST be consistent with the local rotation matrix defined
in case.struct (details can be found in Kara and Kurki-Suonio 81).
CAUTION: additional LM terms which do not belong to the lattice har-
monics will in general not vanish and thus such terms must be omitted.
Automatic termination of the lm series occurs when a second 0,0 pair
appears within the list. When you change the l,m list during an SCF
calculation the Broyden-Mixing is restarted in MIXER.

>>>line 4: must be repeated for each inequivalent atom

Symmetry LM combinations
23 0 0, 4 0, 4 4, 6 0, 6 4,-3 2, 6 2, 6 6,-7 2,-7 6, 8 0, 8 4, 8 8,-9 2,-9 6,-9 4,-9 8,10 0, 10 4,10 8, 10 2, 10 6, 10 10
M3 0 0, 4 0, 4 4, 6 0, 6 4, 6 2, 6 6, 8 0, 8 4, 8 8,10 0, 10 4,10 8, 10 2, 10 6, 10 10
432 0 0, 4 0, 4 4, 6 0, 6 4, 8 0, 8 4, 8 8,-9 4,-9 8,10 0, 10 4,10 8
-43M 0 0, 4 0, 4 4, 6 0, 6 4,-3 2,-7 2,-7 6, 8 0, 8 4, 8 8,-9 2,-9 6,10 0, 10 4,10 8
M3M 0 0, 4 0, 4 4, 6 0, 6 4, 8 0, 8 4, 8 8,10 0, 10 4,10 8

Table 7.26: LM combinations of “Cubic groups” (3‖(111)) direction, requires “positive atomic in-
dex” in case.struct. Terms that should be combined (Kara and Kurki-Suonio 81) must follow one
another.

Symmetry Coordinate axes Indices of Y±LM crystal system
1 any ALL (±l,m) triclinic
-1 any (±2l,m)
2 2‖ z (±l,2m) monoclinic
M m⊥z (±l,l-2m)
2/M 2‖z, m⊥z (±2l,2m)
222 2‖z, 2‖y, (2‖x) (+2l,2m), (-2l+1,2m) orthorhombic
MM2 2‖z, m⊥y, (2⊥x) (+l,2m)
MMM 2⊥z, m⊥y, 2⊥x (+2l,2m)
4 4‖z (±l,4m) tetragonal
-4 -4‖z (±2l,4m), (±2l+1,4m+2)
4/M 4‖z, m⊥z (±2l,4m)
422 4‖z, 2‖y, (2‖x) (+2l,4m), (-2l+1,4m)
4MM 4‖z, m⊥y, (2⊥x) (+l,4m)
-42M -4‖z, 2‖x (m=xy→yx) (+2l,4m), (-2l+1,4m+2)
4MMM 4‖z, m⊥z, m⊥x (+2l,4m)
3 3‖z (±l,3m) rhombohedral
-3 -3‖z (±2l,3m)
32 3‖z, 2‖y (+2l,3m), (-2l+1,3m)
3M 3‖z, m⊥y (+l,3m)
-3M -3‖z, m⊥y (+2l,3m)
6 6‖z (±l,6m) hexagonal
-6 -6‖z (+2l,6m), (±2l+1,6m+3)
6/M 6‖z, m⊥z (±2l,6m)
622 6‖zm, 2‖y, (2‖x) (+2l,6m), (-2l+1,6m)
6MM 6‖z, m‖y, (m⊥x) (+l,6m)
-62M -6‖z, m⊥y, (2‖x) (+2l,6m), (+2l+1,6m+3)
6MMM 6‖z, m⊥z, m⊥y, (m⊥x) (+2l,6m)

Table 7.27: LM combination and local coordinate system of “non-cubic groups” (requires “negative
atomic index” in case.struct)

line 5: free format

GMAX max. G (magnitude of largest vector) in charge density Fourier expan-
sion. For systems with short H bonds larger values (e.g. GMAX up
to 25) could be necessary. Calculations using GGA (potential option
13 or 14 in case.in0) should also employ a larger GMAX value (e.g.
14), since the gradients are calculated numerically on a mesh deter-
mined by GMAX. When you change GMAX during an scf calculation
the Broyden-Mixing is restarted in mixer .

7.6. LAPWDM 81

line 6: A4

reclist FILE writes list of K-vectors into file case.recprlist or reuses this list if
the file exists. The saved list will be recalculated whenever GMAX, or a
lattice parameter has been changed.

NOFILE always calculate new list of K-vectors

7.5 SUMPARA (summation of files from parallel execution)

sumpara is a small program which (in parallel execution of WIEN2k) sums up the densities
(case.clmval *) and quantities from the case.scf2 * files of the different parallel runs.

7.5.1 Execution

The program sumpara is executed by invoking the 2 commands as follows:

x sumpara -d [-updn] and then
sumpara sumpara.def # of proc

where # of proc is the numbers of parallel processors used. It is usually called automatically
from lapw2para or x lapw2 -p .

7.5.2 Dimensioning parameters

The following parameters are listend in file param.inc , but usually they need not to be modified:

NCOM number of LM terms in density
NRAD number of radial mesh points
NSYM order of point group

7.6 LAPWDM (calculate density matrix)

This program was contributed by:

	
J.Kuneš and P.Novák
Inst. of Physics, Acad.Science, Prague, Czeck Republic
email: novakp@fzu.cz

Please make comments or report problems with this program to the WIEN-mailinglist. If necessary,

we will communicate the problem to the authors.

lapwdm calculates the density matrix needed for the orbital dependent potentials generated in orb .
Optionally it also provides orbital moments, orbital and dipolar contributions to the hyperfine field
(only for the specified atoms AND orbitals). It calculates the average value of the operator X which

82 CHAPTER 7. SCF CYCLE

behaves in the same way as the spin-orbit coupling operator: it must be nonzero only within the
atomic spheres and can be written as a product of two operators - radial and angular:

X = Xr(r) ∗Xls(~l, ~s)

Xr(r) and Xls(~l, ~s) are determined by RINDEX and LSINDEX in the input as described below:

I RINDEX=1 LSINDEX=1: <X> is number of electrons inside the atomic sphere (for test)
I RINDEX=2 LSINDEX=1: <X> is the < 1/r3 > expectation value inside the atomic sphere
I RINDEX=1 LSINDEX=2: <X> is the projection of the spin moment inside the atomic sphere
I RINDEX=1 LSINDEX=3: <X> is the projection of the orbital moment inside the atomic

sphere
I RINDEX=3 LSINDEX=3: <X> is the orbital part of the hyperfine field at the nucleus
I RINDEX=3 LSINDEX=5: <X> is the spin dipolar part of the hyperfine field at the nucleus

To use the different operators, set the appropriate input. More information and extentions to oper-
ators of similar behavior may be obtained directly from P. Novák (97)

7.6.1 Execution

The program lapwdm is executed by invoking the command:

x lapwdm [-up/dn -p -c -so] or
lapwdm lapwdm.def

7.6.2 Dimensioning parameters

The following parameters are used (collected in file param.inc):

FLMAX constant = 3
LMAX highest l of wave function inside sphere (consistent with lapw1)
LABC highest l of wave function inside sphere where SO is considered
LOMAX max l for local orbital basis
NRAD number of radial mesh points

7.6.3 Input

A sample input for lapwdm is given below.

------------------ top of file: case.indm --------------------
-9. Emin cutoff energy

1 number of atoms for which density matrix is calculated
1 1 2 index of 1st atom, number of L’s, L1
0 0 r-index, (l,s)-index

------------------- bottom of file ------------------------

Interpretive comments on this file are as follows:

line 1: free format

emin lower energy cutoff (usually set to very low number).

line 2: free format

7.7. ORB 83

natom number of atoms for which the density matrix is calculated

line 3: free format
iatom, nl, l

iatom index of atom for which the density matrix should be calculated
nl number of l-values for which the density matrix should be calculated
l l-values for which the density matrix should be calculated

line 3 is repeated natom times t
line 4: free format, optional

RINDEX, LSINDEX

RINDEX 0-3, as described in the introduction to lapwdm
LSINDEX0-5, as described in the introduction to lapwdm

7.7 ORB (Calculate orbital dependent potentials)

This program was contributed by:

	
P.Novák
Inst. of Physics, Acad.Science, Prague, Czeck Republic
email: novakp@fzu.cz

Please make comments or report problems with this program to the WIEN-mailinglist. If necessary,

we will communicate the problem to the authors.

orb calculates the orbital dependent potentials, i.e. potentials which are nonzero in the atomic
spheres only and depend on the orbital state numbers l,m. In the present version the potential
is assumed to be independent of the radius vector und needs the density matrix calculated in
lapwdm . Three different potentials are implemented in this package:

I LDA+U. There are three variants of this method, two of them are discussed in Novák et al.
2001

1. LDA+U(SIC) - introduced by Anisimov et al. 1993, with an approximate correction for
the self-interaction correction.

2. LDA+U(AMF) - introduced by Czyzyk and Sawatzky 1994 as ’Around the Mean Field’
method. (In Novák et al. 2001 it is denoted as LDA+U(DFT)). This version is (probably)
more suitable for full potential methods.

3. LDA+U(HMF) - in addition the Hubbard model in the mean field approximation, as
introduced by Anisimov et al. 1991 is also implemented. Note, however, that it is to be
used with the LDA (not LSDA) exchange-correlation potential in spin polarized calcu-
lations!

All variants are implemented in the rotationally invariant way (Liechtenstein et al. 1995). If
LDA+U is used in an unrestricted, general way, it introduces an orbital field in the calcula-
tion (in analogy to the exchange field in spin-polarized calculations, but it interacts with the
orbital, instead of spin momentum). The presence of the orbital field lowers the symmetry.
In particular the complex version of LAPW1 must be used. Care is needed when dealing
with the LDA+U orbital field. It may be quite large, and without specifying its direction it

84 CHAPTER 7. SCF CYCLE

may fluctuate, leading to oscilations of scf procedure or/and to false solutions. It is there-
fore necessary to use it in combination with the spin-orbit coupling, preferably running first
LSDA+(s-o) and then slowly switching on the LDA+U orbital field. If the LDA+U orbital
polarization is not needed, it is sufficient to run real version of LAPW1, which then automat-
ically puts the orbital field equal to zero. For systems without the centre of inversion, when
LAPW1 must be complex, an extra averaging of the LDA+U potential is necessary.

I Orbital polarization. The additional potential has the form (Brooks 1985, Eriksson et al. 1989):
VOP = cOP < Lz > lz (7.1)

where cOP is the orbital polarization parameter, < Lz > is projection of the orbital momen-
tum on the magnetization direction and lz is single electron orbital momentum component z
parallel to ~M .

I Interaction with the external magnetic field. In this case the additional potential has a simple
form:

VBext = µB ~Bext(~l + 2~s). (7.2)
The interaction with the electronic spin is taken into account by shifting the spin up and spin
down exchange correlation potentials in LAPW0 by the energy +µBBext − µBBext, respec-
tively. The interaction of Bext with spin could be as well calculated using the ’Fixed spin
moment’ method. For an interaction with the orbital momentum it is necessary to specify the
atoms and angular momentum numbers for which this interaction will be considered. Cau-
tion is needed when considering interaction of the orbital momentum with Bext in metallic
or metallic-like systems. For the analysis see the paper by Hirst 1997

In all cases the resulting potential for a given atom and orbital number l is a Hermitean, (2l +
1)x(2l + 1) matrix. In general this matrix is complex, but in special cases it may be real.

7.7.1 Execution

The program orb is executed by invoking the command:

x orb [-up/dn] or orb up/dnorb.def

7.7.2 Dimensioning parameters

The following parameters are used (collected in file param.inc):

LABC highest l+1 value of orbital dependent potentials
NRAD number of radial mesh points

7.7.3 Input

Since this program can handle three different cases, examples and descriptions for all cases are
given below:

Input for all potentials

line 1: free format
nmod,natorb,ipr

nmod defines the type of potential 1...LDA+U, 2...OP, 3...Bext
natorb number of atoms for which orbital potential Vorb is calculated
ipr printing option, the larger ipr, the longer the output

7.7. ORB 85

line 2: (A5,f8.2)
mixmod,amix

mixmod BROYD or PRATT (see MIXER for more information)
amix coefficient for the Pratt mixing (and first BROYD iteration) of Vorb

line 3: free format
iatom(i),nlorb(i),(lorb(li,i),li=1,nlorb(i))

iatom index of atom in struct file
nlorb number of orbital moments for which Vorb shall be applied
lorb orbital numbers (repeated nlorb-times)

3rd line repeated natorb-times

Input for LDA+U (nmod=1)

line 4: free format

nsic defines ’double counting correction’
nsic=0 ’AMF method’ (Czyzyk et al. 1994)
nsic=1 ’SIC method’ (Anisimov et al. 1993, Liechtenstein et al. 1995)
nsic=2 ’HMF method’ (Anisimov et al. 1991)

line 5: free format

U(li,i),
J(li,i)

Coulomb and exchange parameters, U and J, for LDA+U in Ry for atom
type i and orbital number li

5th line repeated natorb-times, for each natorb repeated nlorb-times

Example of the input file for NiO (LDA+U included for two inequivalent Ni atoms that have in-
dexes 1 and 2 in the structure file):

1 2 0 nmod, natorb, ipr
BROYD 0.3 mixmod, amix
1 1 2 iatom nlorb, lorb
2 1 2 iatom nlorb, lorb
1 nsic (LDA+U(SIC) used)
0.59 0.07 U J
0.59 0.07 U J

Input for Orbital Polarization (nmod=2)

line 4: (free format)

nmodop defines mode of ’OP’
1 average Lz taken separatelly for spin up, spin down
0 average Lz is the sum for spin up and spin down

line 5: (free format)

Ncalc(i)

86 CHAPTER 7. SCF CYCLE

1 Orb.pol. parameters are calculated ab-initio
0 Orb.pol. parameters are read from input

this line is repeated natorb-times
line 6: (free format) (only if Ncalc=0, then repeated nlorb-times)

pop(li,i) OP parameter in Ry

line 7: (free format)
xms(1), xms(2), xms(3)

direction of magnetization expressed in terms of lattice vectors

Example of the input file for NiO (total < Lz > used in (1), OP parameters calculated ab-initio, ~M
along [001]):

2 2 0 nmod, natorb, ipr
BROYD 0.2 mixmod, amix
1 1 2 iatom nlorb, lorb
2 1 2 iatom nlorb, lorb
0 nmodop
1 Ncalc
0. 0. 1. direction of M in terms of lattice vectors

Input for interaction with Bext (nmod=3)

line 4: (free format)

Bext external field in Tesla

line 5: (free format)
xms(1), xms(2), xms(3)

direction of magnetization expressed in terms of lattice vectors

Example of the input file for NiO, (Bext= 4 T, along [001]):

3 2 0 nmod, natorb, ipr
BROYD, 0.3 mixmod, amix
1 1 2 iatom nlorb, lorb
2 1 2 iatom nlorb, lorb
4. Bext in T
0. 0. 1. direction of Bext in terms of lattice vectors

7.8 LCORE (generates core states)

lcore is a modified version of the Desclaux (69, 75) relativistic LSDA atomic code. It computes the
core states (relativistically including SO, or non-relativistically if “NREL” is set in case.struct)
for the current spherical part of the potential (case.vsp). It yields core eigenvalues, the file
case.clmcor with the corresponding core densities, and the core contribution to the atomic
forces.

7.8. LCORE 87

7.8.1 Execution

The program lcore is executed by invoking the command:

lcore lcore.def or x lcore [-up|-dn]

For the spin-polarized case see fcc Ni on the distribution tape.

7.8.2 Dimensioning parameters

The following parameter is listend in file param.inc :

NRAD number of radial mesh points

7.8.3 Input

Below is a sample input (written automatically by lstart)

for TiO2 (rutile), one of the test cases provided with the WIEN2k

package.

------------------ top of file: case.inc --------------------
4 0.0 # of orbitals, shift of potential
1,-1,2 n (principal quantum number), kappa, occup. number
2,-1,2 2s
2,-2,4 2p
2, 1,2 2p*
1 0.0 # of orbital of second atom
1,-1,2 1s
0 end switch

------------------- bottom of file ------------------------

Interpretive comments on this file are as follows:

line 1: free format
nrorb, shift

nrorb number of core orbitals
shift shift of potential for “positive” eigenvalues (e.g. for 4f states as core

states in lanthanides)

line 2: free format
n, kappa, occup

n principle quantum number
kappa relativistic quantum number (see Table 6.4)
occup occupation number (including spin), fractial occupations supported

>>>: line 2 is repeated for each orbital (nrorb times; see line 1)
>>>: line 1 and 2 are repeated for each inequivalent atom. Atoms without core states (e.g. H or

Li) must still include a 1s orbital, but with occupation zero.
line 3: free format

0 zero indicating end of job

88 CHAPTER 7. SCF CYCLE

7.9 MIXER (adding and mixing of charge densities)

In mixer the electron densities of core, semi-core, and valence states are added to yield the total
new (output) density (in some calculations only one or two types will exist). Proper normalization
of the densities is checked and enforced (by adding a constant charge density in the interstitial). As
it is well known, simply taking the new densities leads to instabilities in the iterative SCF process.
Therefore it is necessary to stabilize the SCF cycle. In WIEN2k this is done by mixing the output
density with the (old) input density to obtain the new density to be used in the next iteration. Two
mixing schemes are implemented:

1. straight mixing as originally proposed by Pratt (52) with a mixing factor Q

ρnew(r) = (1−Q)ρold(r) +Qρoutput(r)

2. the Broyden-II mixing scheme (Singh et al., 86), in which all the expansion coefficients of the
density from several preceding iterations are utilized to calculate an optimal mixing fraction
for each coefficient in each iteration.

At the outset of a new calculation (for any changed computational parameter such as k-mesh, ma-
trix size, lattice constant etc.), any existing case.broydX files must be deleted (since the iterative
history which they contain refers to a “different“ incompatible calculation). In addition, in some
cases better convergence can be achieved, if these files are removed every 15-20 iterations. Usually
the Broyden scheme is much better than Pratt’s scheme and thus is recommended.

After modifications to the case.struct file (lattice parameters, atomic positions) a run with mix-
ing factor 0.0 can be used to renormalize the case.clmsum old file from the previous case. If the
file case.clmsum old can not be found by mixer , a “PRATT-mixing“ with mixing factor 1.0 is
done.

Note: a case.clmval file must always be present, since the LM values and the K-vectors are read from
this file.

The total energy and the atomic forces are computed in mixer by reading the case.scf file and
adding the various contributions computed in preceding steps of the last iteration. Therefore
case.scf must not contain a certain “iteration-number” more than once and the number of it-
erations in the scf file must not be greater than 99.

7.9.1 Execution

The program mixer is executed by invoking the command:

mixer mixer.def or x mixer

A spin-polarized case will be detected automatically by x due to the presence of a case.clmvalup
file. For an example see fccNi (sec. 10.2) in the WIEN2k package.

7.9.2 Dimensioning parameters

The following parameters are collected in file param.inc , :

NCOM number of LM terms in density
NRAD number of radial mesh points
NSYM order of point group

7.9. MIXER 89

7.9.3 Input

Below a sample input (written automatically by lstart) is provided for TiO2 (rutile), one of the
test cases provided with the WIEN2k package.

------------------ top of file: case.inm --------------------
BROYD 0.d0 YES (PRATT/BROYD, background charge (+1 for additional e), NORM

0.4 MIXING FACTOR
------------------- bottom of file ------------------------

Interpretive comments on this file are as follows:

line 1: (A5,f8.2,A5)
switch, bgch, norm

switch BROYD Broyden’s scheme
PRATT Pratt’s scheme

bgch Background charge for charged cells (+1 for additional electron, -1 for
core hole, if not neutralized by additional valence electron)

norm YES Charge densities are normalized to sum of Z
NO Charge densities are not normalized

line 2: free format

factor mixing parameter Q (for Pratt and in the first iteration of Broyden). In
the first iteration using Broyden’s scheme: Q is automatically reduced
by the program depending on the average charge distance :DIS and the
number of non-equivalent TM (f)-elements. In case that the scf cycle
fails due to large charge fluctuations, this factor must be further re-
duced (sometimes by an order of magnitude) before the calculations
can be restarted (see sect.12

90 CHAPTER 7. SCF CYCLE

8 Programs for analysis, calculation of
properties, and geometry
optimization

Contents

8.1 TETRA . 91

8.2 QTL . 93

8.3 SPAGHETTI . 95

8.4 IRREP . 96

8.5 LAPW3 . 97

8.6 LAPW5 . 98

8.7 AIM . 100

8.8 LAPW7 . 103

8.9 FILTVEC . 107

8.10 XSPEC . 109

8.11 ELNES . 112

8.12 OPTIMIZE . 116

8.13 ELAST . 116

8.14 MINI . 117

8.15 OPTIC . 119

8.16 JOINT . 121

8.17 KRAM . 123

8.18 FSGEN . 124

8.1 TETRA (density of states)

This program calculates total and partial density of states (DOS) by means of the modified tetra-
hedron method (Blöchl et al 1994). It uses the partial charges in case.qtl generated by lapw2
(switch QTL) and generates the DOS in states/Ry (files case.dos1/2/3) and in states/eV (with
respect to the Fermi energy; files case.dos1/2/3ev). In spin-polarized calculations the DOS is
given in states/Ry/spin (or states/eV/spin).

It is strongly recommended that you use “Run Programs o Tasks o Density of States” from w2web.

91

92 CHAPTER 8. ANALYSIS, PROPERTIES AND OPTIMIZATION

8.1.1 Execution

The program tetra is executed by invoking the command:

tetra tetra.def or x tetra [-up|dn]

8.1.2 Dimensioning parameters

The following parameters are listed in file param.inc :

MG max. number of DOS cases (usually 21)
LXDOS usually 1, except for “cross-DOS” (TELNES program) = 3

8.1.3 Input

An example is given below:

------------------ top of file: case.int ------------------
TiO2 # Title

-1.000 0.00250 1.200 0.003 # EMIN, DE, EMAX for DOS, GAUSS-Broad
7 # NUMBER OF DOS-CASES
0 1 tot # jatom, doscase, description
1 2 Ti-s
1 3 Ti-p
1 4 Ti-px
1 5 Ti-py
1 6 Ti-pz
2 1 O-tot

------------------- bottom of file ------------------------

Interpretive comments on this file are as follows:

line 1: free format
title

line 2: free format
emin, delta, emax, broad

emin,
delta,
emax

specifies the energy mesh (in Ry) where the DOS is calculated. (emin
should be set slightly below the lowest valence band; emax will be
checked against the lowest energy of the highest band in case.qtl ,
and set to the minimum of these two values; delta is the energy incre-
ment.

broad Gauss-broadening factor. Must be greater than delta to have any effect.

line 3: free format
ndos

ndos specifies the number of DOS cases to be calculated. It should be at least
1 and can get up to 21. The corresponding output is written in groups
of 7 to respective case.dosX files

line 4: (2i5,3x,a6)
jatom, jcol, description

8.2. QTL 93

jatom specifies for which atom the DOS is calculated. 0 means total DOS,
jatom = nat+ 1 means DOS in the interstitial, where nat is the number
of inequivalent atoms.

jcol specifies the column to be used in the respective QTL-file. 1 means total,
2 . . . s, 3 . . . p, . . . The further assignment depends on the value of ISPLIT
set in case.struct (see sec. 4.3); the respective description can be
found in the header of case.qtl .

description text used for further identification.

>>>:line 4 is repeated “ndos“ times

8.2 QTL (calculates special partial charges)

This program was contributed by:

	
J.Kuneš
Inst. of Physics, Acad.Science, Prague, Czeck Republic
email: kunes@fzu.cz

Please make comments or report problems with this program to the WIEN-mailinglist. If necessary,

we will communicate the problem to the authors.

qtl creates the input for calculating total density of states, spin projected densities of states and
densities of states projected on an arbitrary basis of a given l-subshell of any atom (including the
relativistic jjz basis) using tetra . For example it supports calculations of “p1/2” or “p3/2” DOS or
an “approximate eg/t2g” splitting in a distrorted structure. The calculation is based on the spectral
decomposition of a density matrix on a given atomic site and its transformation to the required
basis. There are three types of input, which determine the results of the program:

a) the ordinary input file described below,

b) the unitary transformation matrix from the standard lms-basis to the required one. For the most
common bases (e.g. jjz , lms, or eg − t2g) these matrices are supplied with the code in $WIEN-
ROOT/SRCtemplates/case.cf * and must be copied to case.cf$iatom . For less common
cases these must be generated by hand.

c) the proper setting of the local rotation matrix in the case.struct file, which may be different
from the setting for the scf calculation. In the special case of jjz projected densities of states the
local z-axis must coincide with the magnetization direction defined in case.inso . This is not
done automaticaly but a message is written in the output together with the spin coordinate matrix.

qtl can use “parallel” vector-files and the output is written to case.qtl$iatom , which is used
as an input for tetra .

8.2.1 Execution

The program qtl is executed by invoking the command:

x qtl [-up/dn -so -p] or
qtl qtl.def

94 CHAPTER 8. ANALYSIS, PROPERTIES AND OPTIMIZATION

8.2.2 Dimensioning parameters

LMAX highest l of wave function inside sphere (consistent with lapw1)
LABC highest l of wave function inside sphere where SO is considered
LOMAX max l for local orbital basis
NRAD number of radial mesh points

8.2.3 Input

A sample input for case.inq is given below.

------------------ top of file: case.inq --------------------
FULL (SUMA,SPIN,TOTA)
DOSYM (NOSYM)
0.0 1.2 Emin, Emax
0.768 Fermi energy

2 number of atoms for which density matrix is calculated
1 2 index of 1st atom, L
4 3

------------------- bottom of file ------------------------

Interpretive comments on this file are as follows:

line 1: formatA4

FULL all 2(2l + 1) components of l-subshell are calculated
SUMA only sums defined by stars in the case.cf$n file calculated
SPIN projections of total DOS on up/dn subspaces for the case of a calcula-

tion with SOC
TOTA shortcut for calculating total DOS only.

line 2: formatA5

DOSYM standard option
NOSYM symmetrization schwiched off. Allowed only in special cases.

line 3: free format

emin,emax energy window

line 4: free format

ef Fermi energy

line 5: free format

natom number of atom for which projected DOS is calculated

line 6: free format
iatom, l

iatom index of atom for which projected DOS should be calculated
l l-value for which projected DOS should be calculated

line 6: is repeated natom times

8.3. SPAGHETTI 95

8.3 SPAGHETTI (energy bandstructure plots)

This program generates an energy bandstructure plot (postscript file) using the eigenvalues
printed in case.output1 or case.outputso . Using the SCF potentials one runs lapw1
with a special k-mesh along some high-symmetry lines (some sample inputs can be found in
SRCtemplates/*.klist). As an option, one can emphasize the character of the bands by ad-
ditionally supplying corresponding partial charges (file case.qtl which can be obtained using
lapw2 with the QTL option and efmod set to ALL, see 7.4). This will be called “band-character
plotting“ below, in which each energy is drawn by a circle whose radius is proportional to the
specified character of that state. It allows to analyze the character of bands (see also figures 3.15
and 3.16).

It is strongly recommended that you use “Run Programs o Tasks o Bandstructure” from w2web.

8.3.1 Execution

The program spaghetti is executed by invoking the command:

spaghetti spaghetti.def or x spaghetti [-up|dn] [-so]

8.3.2 Input

An example is given below:

----------------- top of file: case.insp -------------------
-15.0 10.0 2 5.0 9 # EMIN, EMAX(in), UNITS (1:Ry, 2:eV), major,minor ticks
14.0 12.5 # Size of plot (x,y) in [cm]
3.0 3.0 # Origin offset [cm]
1.0 # character height
0.58241 # E-Fermi (set to 999. to ignore)
20 25 # band indices for ‘‘character plotting‘‘
0 9 0.4 # jatom, jtype, size factor

for ‘‘character plotting‘‘
------------------- bottom of file ------------------------

Interpretive comments on this file are as follows:

line 1: free format
emin, emax, iunits, eincr, mtick

emin energy minimum of plot, units in Ry or eV (with respect to Ef) depend-
ing on “iunits“

emax energy maximum of plot (see above)
iunits

1 energies in Ry (internal scale)
2 energies in eV with respect to Ef

eincr energy increment where y-axis labels are printed (major ticks)
mtick number of minor ticks of y-axis

line 2: free format
xsize,ysize

xsize plotsize in x direction (cm)

96 CHAPTER 8. ANALYSIS, PROPERTIES AND OPTIMIZATION

ysize plotsize in y direction (cm)

line 3: free format
xoffset, yoffset

xoffset x offset (in cm) of origin of plot
yoffset y offset (in cm) of origin of plot

line 4: free format

charh scaling factor for size of labels

line 5: free format

efermi Fermi energy (Ry); can be found in the respective case.scf file. If set
to 999., Ef is not plotted (and iunits=2 cannot be used)

line 6: free format

nband1,
nband2

lower and upper band index for bands which should show “band-
character plotting“ (if case.qtl is present and the proper switch is
set, see below). In addition the corresponding x and y coordinates are
written to file case.spaghetti ene (which can be used for plotting
with an external xy-plotting program).

line 7: free format
jatom, jcol, jsize

jatom If a case.qtl file is present, jatom indicates the atom whose charac-
ter (selected by jcol) is used for “band-character plotting“ (dots are re-
placed by circles with radii proportional to the corresponding weight).
If set to zero or if case.qtl is not present, “band-character plotting“
does not occur.

jcol specifies the column to be used in the respective QTL-file. 1 means total,
2 . . . s, 3 . . . p, . . . The further assignment depends on the value of ISPLIT
set in case.struct . (ignored for jatom=0). The description can be
found in the header of case.qtl .

jsize size factor for radii of circles used in “band-character plotting”

if line 7 is repeated, averaging of QTLs for degenerate states is performed (useful in SO-
calculations).

8.4 IRREP (Determine irreducible representations)

This program was contributed by:

8.5. LAPW3 97

	
Clas Persson
Condensed Matter Theory Group,Department of Physics,
University of Uppsala, Sweden
email: Clas.Persson@fysik.uu.se

Please make comments or report problems with this program to the WIEN-mailinglist. If necessary,

we will communicate the problem to the authors.

This program determines the irreducible representation for each eigenvalue and all your k-points.
It is in particular usefull to analyse energy bands and their connectivity.

You need a valid vector file, but no other input is required. The output can be found in
case.outputir and case.irrep . For nonmagnetic SO calculations you must set IPR=1 in
case.inso .

It may not work in all cases (non-symmorphic spacegroups and k-points at the surface of the BZ).
See also $WIENROOT/SRCirrep/README .

8.4.1 Execution

The program irrep is executed by invoking the command:

irrep [up/dn]irrep.def or x irrep [-so -up/dn]

8.4.2 Dimensioning parameters

The following parameters are listend in file param.inc :

LOMAX max. no. of local orbital. should be consistent with lapw1 and lapwso
NLOAT number of different types of LOs
MSTP max. step to describe k as a fraction
MAXDG max. no. of degenerate eigenfunctions
MAXIRDG max. no. of degenerate irr. representations
FLMAX size of flag (FL) array (should be 4)
MAXIR max. no. of irreducible representations
NSYM max. no. of symmetry operations
TOLDG min. energy deviation of degenerate states, in units of Rydberg

8.5 LAPW3 (X-ray structure factors)

This program calculates X-ray structure factors from the charge density by Fourier transformation.

You have to specify interactively valence or total charge density (because of the different normal-
ization of case.clmsum and case.clmval) and a maximum sinθ/λ value.

8.5.1 Execution

The program lapw3 is executed by invoking the command:

98 CHAPTER 8. ANALYSIS, PROPERTIES AND OPTIMIZATION

lapw3 lapw3.def or lapw3c lapw3.def or x lapw3 [-c]

8.5.2 Dimensioning parameters

The following parameters are listend in file param.inc r or param.inc c :

LMAX2 highest L in in LM expansion of charge and potential
NCOM number of LM terms in density
NRAD number of radial mesh points

8.6 LAPW5 (electron density plots)

This program generates the charge density (or the potential) in a specified plane of the crystal
on a two dimensional grid which can be used for plotting with an external contour line program
of your choice. Depending on the input files one can generate valence (case.clmval) or dif-
ference densities (i.e. crystalline minus superposed atomic densities) using the additional file
(case.sigma). It is also possible to plot total densities (case.clmsum), Coulomb (case.vcoul),
exchange-correlation or total (case.r2v) potentials, but in those cases the file lapw5.def has to
be edited and you must replace case.clmval by the respective filename. The file case.rho
contains in the first line

npx, npy, xlenght, ylength;

and then the density (potential) written with:

write(21,11) ((charge(i,j),j=1,npy),i=1,npx)
11 format(5e16.8)

It is strongly recommended that you use “Run Programs o Tasks o Electron density plots” from
w2web, see the TiC example inFig.3.6 .

8.6.1 Execution

The program lapw5 is executed by invoking the command:

lapw5 lapw5.def or lapw5c lapw5.def or x lapw5 [-c -up|dn]

8.6.2 Dimensioning parameters

The following parameters are listend in file param.inc :

LMAX2 highest L in in LM expansion of charge and potential
NCOM number of LM terms in density
NRAD number of radial mesh points
NPT00 number of radial mesh points beyond RMT
NSYM order of point group

8.6. LAPW5 99

8.6.3 Input

An example is given below. You may want to use XCRYSDEN by T.Kokalj to generate this file (see
sect. 9.9.2).

---------------- top of file: case.inc --------------------
0 0 0 1 # origin of plot: x,y,z,denominator
1 1 0 1 # x-end of plot
0 0 1 2 # y-end of plot
3 3 3 # x,y,z nshells (of unit cells)
100 100 # nx,ny
RHO # RHO/DIFF/OVER; ADD/SUB or blank
ANG VAL NODEBUG # ANG/ATU, VAL/TOT, DEBUG/NODEBUG
NONORTHO # optional line: ORTHO|NONORTHO
------------------- bottom of file ------------------------

Interpretive comments on this file are as follows:

line 1: free format

ix,iy,iz,idv The plane and section of the plot is specified by three points in the unit
cell, an origin of the plot, an x-end and an y-end. The first line specifies
the coordinates of the origin, where x=ix/idv, . . . in units of the lattice
vectors (except fc, bc and c lattices, where the lattice vectors of the con-
ventional cell are used)

line 2: free format

ix,iy,iz,idv coordinates of x-end

line 3: free format

ix,iy,iz,idv coordinates of y-end (The two directions x and y must be orthogonal to
each other unless NONORTHO is selected). Since it is quite difficult to
specify those 3 points for a rhombohedral lattice, an auxiliary program
rhomb in5 is provided, which creates those points when you specify
3 atomic positions which will define your plane. You can find this pro-
gram using “Run Programs o Other Goodies” from w2web.

line 4: free format

nxsh,
nysh,
nzsh

specifies the number of nearest neighbor cells (in x,y,z direction) where
atomic positions are generated (needs to be increased for very large plot
sections, otherwise some “atoms” are not found in the plot)

line 5: free format

npx,
npy

specifies number of grid points in plot. npy=1 produces a file
case.rho onedim containing the distance r (from the origin) and the
respective density, which can be used in a standard x-y plotting pro-
gram.

line 6: format (2a4)
switch, addsub

switch RHO charge (or potential) plots, no atomic density is used (regular case)

100 CHAPTER 8. ANALYSIS, PROPERTIES AND OPTIMIZATION

DIFF difference density plot (crystalline - superposed atomic densities),
needs file case.sigma (which is generated with LSTART, see section
6.4)

OVER superposition of atomic densities, needs file case.sigma
addsub ADD adds densities from units 9 and 11 (if present), e.g. to add spin-up and

down densities.
SUB subtracts density of unit 11 (if present) from that of unit 9 (e.g. for the

spin-density, which is the difference between spin-up and down densi-
ties). This is the default if this field is blank.

line 7: format (3a4)
iunits, cnorm, debug

iunits ATU density (potential) in atomic units e/a.u.3 (or Ry)
ANG density in e/Å

3
(do not use this option for potentials)

cnorm determines normalization factor
VAL used for files case.clmval , r2v , vcoul
TOT used for files case.clmsum

debug DEBU debugging information is printed (large output)

line 8: free format

noorth1 ORTHO (default) enforces directions to be orthogonal
NONORTdirections can be arbitrary; use this option only if your plotting program

supports non orthogonal plots (e.g. for XCYSDENS).

In order to plot total densities or potentials (see cnorm as above) you have to create lapw5.def us-
ing x lapw5 -d , then edit lapw5.def and insert proper filenames (case.clmval , case.r2v ,
case.vcoul) for units 9 and 11, and finally run lapw5 lapw5.def .

8.7 AIM (atoms in molecules)

This program was contributed by:

	
Javier D. Fuhr and Jorge O. Sofo
Instituto Balseiro and Centro Atomico Bariloche
S. C. de Bariloche - Rio Negro, Argentina
email: fuhr@cab.cnea.gov.ar and sofo@cab.cnea.gov.ar

Please make comments or report problems with this program to the WIEN-mailinglist. If necessary,

we will communicate the problem to the authors.

This program analyses the topology of the electron density according to Bader’s “Atoms in
molecules” theory. For more information see Bader 2001 and Sofo and Fuhr 2001.

Basically it performs two different tasks, namely searching for “critical points” (CP) and/or deter-
mination of the atomic basins with an integration of the respective charge density.

It is important that you provide a “good” charge density, i.e. one which is well converged with
respect to LMMAX in the CLM-expansion (you may have to increase the default LM-list to LM=8
or 10) and with as little “core-leakage” as possible (see lstart , sect. 6.4), otherwise discontinuities
appear at the sphere boundary.

8.7. AIM 101

8.7.1 Execution

The program aim is executed by invoking the command:

aim aim.def or aimc aim.def or x aim [-c]

8.7.2 Dimensioning parameters

The following parameters are listend in file param.inc :

LMAX2 highest L in in LM expansion of charge and potential
NRAD number of radial mesh points
NPT00 number of radial mesh points beyond RMT
NSYM order of point group

8.7.3 Input

The input file contains “SWITCHES”, followed by the necessary parameters until an END-switch
has been reached.

Examples for “critical-point” searches and “charge-integration” are given below:

---------------- top of file: case.inaim --------------------
CRIT
1 # index of the atom (counting multiplicity)
ALL # TWO/THRE/ALL /FOUR
3 3 3 # x,y,z nshells (of unit cells)
END
------------------- bottom of file ------------------------

Interpretive comments on this file are as follows:

line 1: A4

CRIT Keyword to calculate critical points

line 2: free format

iatom index of the atom from where the search should be started. This count
includes the multiplicity, i.e. if the first atom has MULT=2, the “sec-
ond atom” has iatom=3 (Do not use simply the atom-numbers from
case.struct)

line 3: A4

KEY TWO, THRE, ALL, or FOUR
defines the starting point for the CP search to be in the middle of 2, 3 or
4 atoms. ALL combines option TWO and THRE together.

line 4: free format
nxsh, nysh, nzsh

specifies the number of nearest neighbor cells (in x,y,z direction) where
atomic positions are generated.

102 CHAPTER 8. ANALYSIS, PROPERTIES AND OPTIMIZATION

lines 1-4 can be repeated with different atoms or KEYs
line 5: A4

END specifies end of job.

In case.outputaim the critical points are marked with a label :PC

:PC a1 a2 a3 l1 l2 l3 c lap rho

where a1,a2,a3 are the coordinates of the CP in lattice vectors; l1 l2 l3 are the eigenvalues of the
Hessian at the CP; c is the character of the CP (-3, -1, 1 or 3); lap is the Laplacian of the density at
the CP (lap=l1+l2+l3) and rho is the density at the CP (all in atomic units).

---------------- top of file: case.inaim --------------------
SURF
3 atom in center of surface (including MULT)
40 0.0 3.1415926536 theta, 40 points, from zero to pi
40 -0.7853981634 2.3561944902 phi
0.07 1.0 4 step along gradient line, rmin, check
1.65 0.1 initial R for search, step (a.u)
3 3 3 nshell
IRHO "INTEGRATE" rho
WEIT WEIT (surface weights from case.surf), NOWEIT
30 30 radial points outside min(RMIN,RMT)
END
------------------- bottom of file ------------------------

Interpretive comments on this file are as follows:

line 1: A4

SURF Keyword to calculate the Bader surface.

line 2: free format

iatom index of the atom from where the search should be started. This count
includes the multiplicity, i.e. if the first atom has MULT=2, the “sec-
ond atom” has iatom=3 (Do not use simply the atom-numbers from
case.struct)

line 3: free format
ntheta, thmin, thmax

ntheta number of theta directions for the surface determination
thmin starting angle for theta
thmax ending angle for theta. If you have higher symmetry, you can change

thmin/max and use only the “irreducible” part, i.e. when you have a
mirror plane normal to z, restrict thmax to π/2.

line 4: free format
nphi, phimin, phimax

nphi number of phi directions for the surface determination
phimin starting angle
phimax ending angle. (see comments for theta to reduce phi from the full 0−2π

integration).

8.8. LAPW7 103

line 5: free format
h0, frmin, nstep

h0 step in real space to follow the gradient (˜ 0.1)
frmin defines the radius, for which the routine assumes that the search path

has entered an atom, given as “rmin = frmin * rmt” (0.8-1.0)
nstep number of steps between testing the position being inside or outside of

the surface (4-8).

line 6: free format
r0, dr0

r0 initial radius for the search of the surface radius (1.5)
dr0 step for the search of the surface radius(0.1)

line 7: free format
nxsh, nysh, nzsh

specifies the number of nearest neighbor cells (in x,y,z direction) where
atomic positions are generated.

line 8: A4

IRHO integrate function on “unit 9” (usually case.clmsum) inside previ-
ously defined surface (stored in case.surf).

line 9: A4

WEIT specifies the use of weights in case.surf .

line 9: free format

npt specifies number of points for radial integration outside the MT (30)

line 8: A4

END specifies end of job.

8.8 LAPW7 (wave functions on grids / plotting)

This program was contributed by:

	

Uwe Birkenheuer
Max-Planck-Institut für Physik komplexer Systeme
Nöthnitzer Str. 38, D-01187 Dresden, Germany
email: birken@mpipks-dresden.mpg.de
and
Birgit Adolph,
University of Toronto, T.O., Canada

Please make comments or report problems with this program to the WIEN-mailinglist. If necessary,

we will communicate the problem to the authors.

104 CHAPTER 8. ANALYSIS, PROPERTIES AND OPTIMIZATION

The program lapw7 generates wave function data on spatial grids for a given set of k-points and
electronic bands. lapw7 uses the wave function information stored in case.vector (or in re-
duced (filtered) form in case.vectorf which can be obtained from case.vector by running
the program filtvec). Depending on the options set in the input file case.in7(c) one can
generate the real or imaginary part of the wave functions, it’s modulus (absolute value) or argu-
ment, or the complex wave function itself. For scalar-relativistic calculations both the large and
the small component of the wave functions can be generated (only one at a time). The wave func-
tions are generated on a grid which is to be specified in the input file(s). The grid can either be
any arbitrary list of points (to be specified free-formatted in a separate file case.grid) or any
n-dimensional grid (n = 0...3). The operating mode and grid parameters are specified in the input
file case.in7(c) . As output lapw7 writes the specified wave function data for further process-
ing – e.g. for plotting the wave functions with some graphical tools such as gnuplot – in raw
format to case.psink . For quick inspection, a subset of this data is echoed to the standard out-
put file case.outputf (the amount of data can be controlled in the input). In case, lapw7 is
called many times for one and the same wave function, program overhead can be reduced, by first
storing the atomic augmentation coefficients Alm, Blm (and Clm) to a binary file case.abc . For
the spin-polarized case two different calculations have to be performed using either the spin-up or
the spin-down wave function data as input.

It should be easy to run lapw7 in parallel mode, and/or to apply it to wave function data obtained
by a spin-orbit interaction calculation. None of these options have been implemented so far. Also,
lapw7 has not yet been adapted for w2web.

Please note: lapw7 requires an LAPW basis set and does not work with APW+lo yet.

8.8.1 Execution

The program lapw7 is executed by invoking the command:

lapw7 lapw7.def or lapw7c lapw7.def or x lapw7 [-c] [-up|dn] [-sel]

With the -sel option lapw7 expects data from the reduced (filtered) wave function file
case.vectorf , otherwise the standard wave function file case.vector is used. The reduced
vector file case.vectorf is assumed to resist in the current working directory, while the stan-
dard vector file case.vector (which may become quite large) is looked for in the WIENscratch
directory. For details see lapw7.def .

8.8.2 Dimensioning parameters

The following parameters are listed in file param.inc (r/c) :

NRAD number of radial mesh points
NSYM order of point group
LMAX7 maximum L value used for plane wave augmentation
LOMAX maximum L value used for local orbitals

The meaning of LMAX7is the same as that of LMAX2in lapw2 and that of LMAX-1 in lapw1 . Rather
than being an upper bound it directly defines the number of augmentation functions to be used.
It may be set different to LMAX2in lapw2 or LMAX-1 in lapw1 , but it must not exceed the latter
one. Note that, the degree of continuity of the wave functions across the boundary of the muffin
tin sphere is quite sensitive to the choice of the parameter LMAX7. A value of 8 for LMAX7turned
out to be a good compromise.

8.8. LAPW7 105

8.8.3 Input

A sample input is given below. It shows how to plot a set of wave functions on a 2-dim. grid.

- - - - - - - - - - - - - - - - - top of file - - - - - - - - - - - - - - - - -
2D ORTHO # mode O(RTHOGONAL)|N(ON-ORTHOGONAL)
0 0 0 2 # x, y, z, divisor of origin
3 3 0 2 # x, y, z, divisor of x-end
0 0 3 2 # x, y, z, divisor of y-end
141 101 35 25 # grid points and echo increments
NO # DEP(HASING)|NO (POST-PROCESSING)
RE ANG LARGE # switch ANG|ATU|AU LARGE|SMALL
1 0 # k-point, band index
- - - - - - - - - - - - - - - - - end of file - - - - - - - - - - - - - - - - -

Interpretive comments on this file are as follows.

line 1: format(A3,A1)
mode flag
mode the type of grid to be used

ANY An arbitrary list of grid points is used.
0D, 1D, 2D, or 3D An n-dim. grid of points is used. n = 0, 1, 2, or 3.

flag orthogonality checking flag (for n-dim. grids only)
N The axes of the n-dim. grid are allowed to be non-

orthogonal.
O or 〈blank〉 The axes of the n-dim. grid have to be mutual or-

thogonal.

line 2: free format — (for n-dim. grids only)
ix iy iz idiv Coordinates of origin of the grid, where x=ix/idv

etc. in units of the conventional lattice vectors.

line 3: free format — (for n-dim. grids with n > 0 only)
ix iy iz idiv Coordinates of the end points of each grid axis.

This input line has to be repeated n-times.

line 4: free format — (not for 0-dim. grids)
np ... npo ... In case of an n-dim. grid, first the number of grid

points along each axis, and then the increments
for the output echo for each axis. Zero increments
means that only the first and last point on each
axis are taken. In case of an arbitrary list of grid
points, the total number of grid points and the in-
crement for the output echo. Again a zero incre-
ments means that only the first and last grid point
are taken. Hence, for n-dim. grids, altogether, 2∗n
integers must be provided; for arbitrary lists of
grid points two intergers are expected.

106 CHAPTER 8. ANALYSIS, PROPERTIES AND OPTIMIZATION

line 5: format(A3)
tool post-processing of the wave functions

DEP Each wave function is multiplied by a complex
phase factor to align it (as most as possible) along
the real axis (the so-called DEP(hasing) option).

NO No post-processing is applied to the wave func-
tions.

line 6: format(A3,1X,A3,1X,A5)
switch iunit whpsi
switch the type of wave function data to generate

RE The real part of the wave functions is evaluated.
IM The imaginary part of the wave functions is eval-

uated.
ABS The absolute value of the wave functions is eval-

uated.
ARG The argument the wave functions in the complex

plane is evaluated.
PSI The complex wave functions are evaluated.

iunit the physical units for wave function output
ANG Å units are used for the wave functions.
AU or ATU Atomic units are used for the wave functions.

whpsi the relativistic component to be evaluated
LARGE The large relativistic component of wave function

is evaluated.
SMALL The small relativistic component of wave function

is evaluated.

line 7: free format
iskpt iseig
iskpt The k-points for which wave functions are to

be evaluated. Even if the wave function in-
formation is read from case.vectorf , iskpt
refers to the index of the k-point in the original
case.vector file! If iskpt is set to zero, all k-
points in case.vector(f) are considered.

iseig The band index for which wave functions are to
be evaluated. Even if the wave function informa-
tion is read from case.vectorf , iseig refers to
the band index in the original case.vector file!
If iseig is set to zero, all bands (for the selected k-
point(s)) which can found in case.vector(f)
are considered.

8.9. FILTVEC 107

line 8: format(A4) — this line is optional
handle augmentation coefficient control flag

SAVE or STOR(E) Augmentation coefficients are stored in
case.abc). No wave function data is gen-
erated in this case. This option is only allowed if
a single wave function is selected in the previous
input line.

READ or REPL(OT) Previously stored augmentation coefficients are
read in (from case.abc). This option is only
allowed if the same single wave function as the
one who’s augmentation coefficients are stored in
case.abc is selected in the previous input line.

anything else Augmentation coefficients are generated from the
wave function information in case.vector(f) .

8.9 FILTVEC (wave function filter / reduction of case.vector)

This program was contributed by:

	

Uwe Birkenheuer
Max-Planck-Institut für Physik komplexer Systeme
Nöthnitzer Str. 38, D-01187 Dresden, Germany
email: birken@mpipks-dresden.mpg.de
and
Birgit Adolph
University of Toronto, T.O., Canada

Please make comments or report problems with this program to the WIEN-mailinglist. If necessary,

we will communicate the problem to the authors.

The program filtvec reduces the information stored in case.vector files by filtering out a
user-specified selection of wave functions. Either a fixed set of band indices can be selected which
is used for all selected k-points (global selection mode), or the band indices can be selected individ-
ually for each selected k-point (individual selection mode). The complete wave function and band
structure information for the selected k-points and bands is transferred to case.vectorf . The
information on all other wave functions in the original file is discarded. The structure of the gener-
ated case.vectorf file is identical to that of the original case.vector file. Hence, it should be
possible to use case.vectorf as substitutes for case.vector anywhere in the WIEN program
package. (This has only been tested for lapw7 .and filtvec .) To filter vector files from spin-
polarized calculations, filtvec has to be run separately for both the spin-up and the spin-down
files.

filtvec has not yet been adapted for w2web.

8.9.1 Execution

The program filtvec is executed by invoking the command:

108 CHAPTER 8. ANALYSIS, PROPERTIES AND OPTIMIZATION

filtvec filtvec.def or filtvecc filtvec.def or x filtvec [-c] [-
up|dn]

In accordance with the file handling for lapw1 and lapw7 the input vector file case.vector
is assumed to be located in the WIEN scratch directory, while the reduced output vector file
case.vectorf is written to the current working directory. See filtvec.def for details.

8.9.2 Dimensioning parameters

The following parameters are listed in file param.inc (r/c) :

NKPT number of k-points
LMAX maximum number of L values used (as in lapw1)
LOMAX maximum L value used for local orbitals (as in lapw1)

The parameter LMAXand LOMAXmust be set precisely as in lapw1 ; all other parameters must not
be chosen smaller than the corresponding parameters in lapw1 .

8.9.3 Input

Two examples are given below. The first uses global selection mode; the second individual selection
mode.

I. Global Selection Mode

- - - - - - - - - - - - - - - - - top of file - - - - - - - - - - - - - - - - -
3 1 17 33 # number of k-points, k-points
2 11 -18 # number of bands, band indices
- - - - - - - - - - - - - - - - - end of file - - - - - - - - - - - - - - - - -

Interpretive comments on this file are as follows.

line 1: free format
kmax ik(1) ... ik(kmax) Number of k-point list items, followed by the list items

themselves. Positive list items mean selection of the k-point
with the specified index; negative list items mean selection
of a range of k-points with indices running from the previ-
ous list item to the absolute value of the current one. E.g. the
sequence 2 -5 stands for 2, 3, 4, and 5.

line 2: free format
nmax ie(1) ... ie(nmax) Number of band index items, followed by the list items

themselves. Again, positive list items mean selection of a
single band index; negative list items mean selection of a
range of band indices.

II. Individual Selection Mode

- - - - - - - - - - - - - - - - - top of file - - - - - - - - - - - - - - - - -
2 : # number of k-points
17 4 11 13 15 17 # k-point, number of bands, band indices
33 3 11 -14 18 # k-point, number of bands, band indices
- - - - - - - - - - - - - - - - - end of file - - - - - - - - - - - - - - - - -

8.10. XSPEC 109

Interpretive comments on this file are as follows.

line 1: free format
kmax the number of individual k-points to be selected. This

number must be followed by any text, e.g. ’SELEC-
TIONS’ or simply ’:’, to indicate individual selection
mode.

line 2: free format
ik nmax ie(1) ... ie(nmax) First the index of the selected k-point, then the number

of band index items, followed by the list items for the
current k-point themselves. Positive list items mean se-
lection of the band with the specified index; negative list
items mean selection of a range of band indices running
from the previous list item to the absolute value of the
current one. E.g. the sequence 3 -7 stands for 3, 4, 5, and
7.
This input line has to be repeated kmax-times.

8.10 XSPEC (calculation of X-ray Spectra)

This program calculates near edge structure of x-ray absorption or emission spectra according to
the formalism described by Neckel et al.75, Schwarz et al. 79 and 80. For a brief introduction see be-
low. It uses the partial charges in case.qtl . This file must be generated separately using lapw2 .
Partial densities of states in case.dos1ev are generated using the tetra program. Spectra are
calculated for the dipole allowed transitions, generating matrix elements, which are multiplied
with a radial transition probability and the partial densities of states. Unbroadened spectra are
found in the file case.txspec , broadened spectra in the file case.xspec . Other generated files
are: case.m1 (matrix element for the selection rule L+1) and case.m2 (matrix element for the
selection rule L-1) and case.corewfx (radial function of the core state). The calculation is done
with several individual programs (initxspec , tetra , txspec , and lorentz). which are linked
together with the c-shell script xspec .

It is strongly recommended that you use “Run Programs o Tasks o X-ray spectra” from w2web.

8.10.1 Execution

Execution of the shell script xspec

The program xspec is executed by invoking the command:

xspec xspec.def or x xspec [-up|-dn]

Sequential execution of the programs

Besides calculating the X-ray spectra in one run using the xspec script, calculations can be done
“by hand“, i.e. step by step, for the sake of flexibility.

110 CHAPTER 8. ANALYSIS, PROPERTIES AND OPTIMIZATION

initxspec This program generates the appropriate input file case.int , according to the dipole
selection rule, for the subsequent execution of the tetra program.
The program initxspec is executed by invoking the command:

initxspec xspec.def or x initxspec [-up|-dn]

tetra The appropriate densities of states for (L+1) and (L-1) states respectively are generated by
execution of the tetra program.
The program tetra is executed by invoking the command:

tetra tetra.def or x tetra [-up|-dn]

txspec This program calculates energy dependent dipole matrix elements. Theoretical X-ray spec-
tra are generated using the partial densities of states (in the case.dos1ev file) and multi-
plying them with the corresponding dipole matrix elements.
The program txspec is executed by invoking the command:

txspec xspec.def or x txspec [-up|-dn]

lorentz The calculated spectra must be convoluted to account for lifetime broadening and for a
finite resolution of the spectrometer before they can be compared with experimental spectra.
In the lorentz program a Lorentzian is used to achieve this broadening.
The program lorentz is executed by invoking the command:

lorentz xspec.def or x lorentz [-up|-dn]

8.10.2 Dimensioning parameters

The following dimensioning parameters are collected in the files param.inc of SRCtxspec and
SRClorentz :

IEMAX0 maximum number of energy steps in the spectrum (SRC lorentz)
NRAD number of radial mesh points
LMAX highest l+1 in basis function inside sphere (consistent with input in case.in1)

8.10.3 Input

Two examples are given below; one for emission spectra and one for absorption spectra:

Input for Emission Spectra:

---------------- top of file: nbc.inxs --------------------
NbC: C K (Title)
2 (number of inequivalent atom)
1 (n core)
0 (l core)
0,0.5,0.5 (split, int1, int2)
-20,0.1,3 (EMIN,DE,EMAX in eV)
EMIS (type of spectrum, EMIS or ABS)
0.35 (S)
0.25 (gamma0)
0.3 (W)
AUTO (generate band ranges AUTOmatically or MANually
-7.21 (E0 in eV)
-10.04 (E1 in eV)
-13.37 (E2 in eV)
------------------- bottom of file ------------------------

Input for Absorption Spectra:

---------------- top of file: nbc.inxs --------------------
NbC: C K (Title)

8.10. XSPEC 111

2 (number of inequivalent atom)
1 (n core)
0 (l core)
0,0.5,0.5 (split, int1, int2)
-2,0.1,30 (EMIN,DE,EMAX in eV)
ABS (type of spectrum)
1.0 (S)
------------------- bottom of file ------------------------

Interpretive comments on these files are as follows.

line 1: free format

TITLE Title

line 2: free format

NATO Number of the selected atom (in case.struct file)

line 3: free format

NC principle quantum number of the core state

line 4: free format

LC azimuthal quantum number of the core state

The table below lists the most commonly used spectra:

Spectrum n l
K 1 0
LII,III 2 1
MV 3 2

Table 8.53: Quantum numbers of the core state involved in the x-ray spectra

line 5 free format

SPLIT,
INT1,
INT2

split in eV between e.g. LII and LIII spectrum (compare with the re-
spective core eigenvalues), INT1 and INT2 specifies the relative inten-
sity between these spectra. Values of 0, 0.5, 0.5 give unshifted spectra.

line 6: free format

EMIN,
DE,
EMAX

minimum energy, energy increment for spectrum, maximum energy; all
energies are in eV and with respect to the Fermi level

EMIN and EMAX are only used as limits if the energy range created
by the lapw2 calculation (using the QTL switch) is greater than the
selected range.

line 7: Format A4

TYPE EMIS X-ray emission spectrum
ABS X-ray absorption spectrum (default)

112 CHAPTER 8. ANALYSIS, PROPERTIES AND OPTIMIZATION

line 8: free format

S broadening parameter for the spectrometer broadening. For absorption
spectra S includes both experimental and core broadening. Set S to zero
for no broadening.

line 9: free format

GAMMA0 broadening parameter for the life-time broadening of the core states.
Set GAMMA0 to zero to avoid lifetime broadening of the core states.

line 10: free format

W broadening parameter for the life-time broadening of valence states. Set
W to zero to avoid lifetime broadening of the valence states.

line 11: format A4

BANDRA
AUTO band ranges are determined AUTOmatically (default)
MAN band ranges have to be entered MANually

line 12: free format

E0 Emission spectra: onset energy for broadening, E0, generated automat-
ically if AUTO was set in line 10
Absorption spectra: not used

line 13: free format

E1 Emission spectra: onset energy for broadening, E1, generated automat-
ically if AUTO was set in line 10
Absorption spectra: not used

line 14: free format

E2 Emission spectra: onset energy for broadening, E2, generated automat-
ically if AUTO was set in line 10
Absorption spectra: not used

8.11 ELNES (calculation of energy loss near edge structure)

This program was contributed by:

	
Piere-Henri Louf, Michael Nelhiebel, Peter Schattschneider
Inst. f. Angewandte und Technische Physik
Wiedner Hauptstr. 8-10
A-1040 Wien, AUSTRIA
schatt@atp6000.tuwien.ac.at
Please make comments or report problems with this program to the WIEN-mailinglist. If necessary, we will

communicate the problem to the authors.

8.11. ELNES 113

This program calculates energy loss near edge structures (ELNES) according to the formalism de-
scribed by Nelhiebel M. et al. 1999.

To calculate orientation dependent spectra the option formula must be set to “F” or “H” in the in-
put. For systems with lower symmetry than orthorombic, “H” has to be selected and the following
steps must be performed: generate a “full-k mesh” (make all positions inequivalent, set symme-
try operations only to the identity), run x kgen , edit case.struct and set ISPLIT=99, rerun x
lapw1 and x lapw2 -qtl . For Formula “F” ISPLIT=88 is required.

8.11.1 Execution

Execution of the shell script elnes

The program elnes is executed by invoking the command:

elnes elnes.def or x elnes [-up|-dn]

Sequential execution of the programs

Besides calculating the ELNES in one run using the elnes script, calculations can be done “by
hand“, i.e. step by step, for the sake of flexibility.

initelnes This program generates the appropriate input file case.int , according to the dipole
selection rule, for the subsequent execution of the tetra program. The program initelnes
is executed by invoking the command:

initelnes elnes.def or x initelnes [-up|-dn]

tetra The appropriate densities of states for (L+1) and (L-1) states respectively are generated by
execution of the tetra program. The program tetra is executed by invoking the command:

tetra tetra.def or x tetra [-up|-dn]

telnes This program calculates the electron energy loss spectrum. The program telnes is exe-
cuted by invoking the command:

telnes elnes.def or x telnes [-up|-dn]

8.11.2 Dimensioning parameters

The following dimensioning parameters are collected in the file param.inc of SRCtelnes :

IEMAX0 maximum number of energy steps in the spectrum
NRAD number of radial mesh points
LMAX highest l+1 in basis function inside sphere (consistent with input in case.in1)
LMMX number of LM terms in potential (should be at least NCOM-1)
NATO number of inequivalent atoms
NDIF total number of atoms per unit cell
NGAU number of Gaunt coefficients for the non-spherical contributions to the matrix

elements
NSLMAX highest l+1 in basis functions for non-muffin-tin matrix elements (consistent with

input in case.in1)
NPOSMAX max. number of postions for simulation of a series of spectra
LAMBMAX max. dimension of λ in the 3j Symbol

114 CHAPTER 8. ANALYSIS, PROPERTIES AND OPTIMIZATION

8.11.3 Input

An example input for the B-K edge of BN is given below:

---------------- top of file: bn.innes --------------------
Title: Atom 1 K Peak
1, 1 (atom)
1 (n core)
0 (l core)
0,0.05,30 (EMIN,DE,EMAX)
190, 0, .8 (E-Loss, Split between edges, precision; all in [eV])
200 (energy of the incident electrons (keV))
0, 0 (ThetaX, ThetaY in mrad)
0 (double of Bragg angle in mrad)
0, 0, 0 (DeltaX, DeltaY, Number of cases - 1: (0=1 case))
4 (LambdaMax)
L (L for Line and P for Plane)
N (N: Normal; F: Fine; H: HyperFine)
00.D0, 00.D0, 00.D0 (Euler angles)
0 (Spectrometer aperture in mrad)
0 (collection angle in mrad)
1, 1 (NR, NT)
------------------- bottom of file ------------------------

Interpretive comments on these files are as follows.

line 1: free format

TITLE Title

line 2: free format

NATO,
NEQ

Number of the selected atom (in case.struct file), number of the equiva-
lent position (set to 0 to sum over all equivalent positions)

line 3: free format

NC principle quantum number of the core state

line 4: free format

LC azimuthal quantum number of the core state

line 5 free format

EMIN,DE,EMAX Simulation of the edge will be performed from EMIN to EMAX with a
step size of DE (in eV with respect to EF)

line 6 free format

DeltaE,
SPLIT,
PreV

DeltaE is the energy loss of the first edge. SPLIT is the energy differ-
ence between the 2 edges of the same l’ with 2 possible j, first edge:
j = l′ + 1/2, second j = l′ − 1/2. Their occupancy is 2j+1

2(2l′+1) . PreV:
Smoothening parameter/instrumental broadening: σ corresponding to
a Gaussian function (σ = FWHM

2,35).

line 7 free format

Energy Energy E0 of the incident electrons (in keV)

8.11. ELNES 115

line 8 free format

ThetaX,
ThetaY

ThetaX (mrad): angle between 000 and the EELS aperture in the direc-
tion of the second excited spot. ThetaY: angle in the orthogonal direc-
tion.

line 9 free format

TwoThetaB ~Qx− ~Qx′ in mrad; usually the default value of 0 is not changed. It is only
necessary when calculating off diagonal terms of the mixed dynamic
form factor.

line 10 free format

DeltaThX,
DeltaThY,
NStep

Simulation of a series with different Bragg angles: increments ∆θx, ∆θy ;
number of cases - 1. NSTEP is usually set to 0 to simulate only one case

line 11 free format

LambdaMax λmax in the 3j Symbol (must be less than LAMBMAX). To restrict the
calculation to the Dipole-Selection rule, set λmax = 1

line 12 free format

Choice Choice can either be L to simulate along a line or P to simulate in two
dimensions

line 13 free format

Formula Formula can either be N (normal: use l′ DOS), F (fine: user l′m′ DOS)
or H (hyperfine: use cross-DOS). Choice selects which formula is used
to simulate the EELS spectra. N is normally used to simulate polycrys-
talline samples and gives an integral over 4π. H and F are required for
the simulation of angular resolved spectra; in cases with a symmetry
lower than orthorombic H is required.

line 14 free format

AAlpha,
ABeta,
AGamma

Euler angles between observer and crystal basis (only used if formula =
F or H)

line 15 free format

SpecAp spectrometer aperture (mrad) (only used if formula = F or H)

line 16 free format

CoAng collection angle (mrad) (only used if formula = F or H)

line 17 free format

116 CHAPTER 8. ANALYSIS, PROPERTIES AND OPTIMIZATION

NR, NT integration parameters; set if SpecAp or CoAng 6= 0, integration scheme
for NR=3 and NT=4 has the following grid:

8.12 OPTIMIZE (Volume and c/a Optimization)

This program generates a series of new struct files corresponding to different volumes or c/a ratios
(depending on your input choice) from an existing struct file (either case initial.struct or
case.struct) and writes a shell script optimize.job . You may modify this script and execute
it to find the equilibrium volume or c/a ratio (see Sec.5.3.1). When case initial.struct is not
present, it will be generated from the original case.struct .

8.12.1 Execution

The program optimize is executed by invoking the command:

optimize optimize.def or x optimize

8.12.2 Input

You have to specify interactively whether volume or c/a optimization should be carried out, how
many cases you want to do and how large the change (+/- xx %) should be for each case.

8.13 ELAST (Elastic constants for cubic cases)

This program was contributed by:

	
Thomas Charpin
Lab. Geomateriaux de l’IPGP, Paris, France
(In September 2001 we received the sad notice that Thomas Charpin died in a
car accident).
Please make comments or report problems with this program to the WIEN-mailinglist. If necessary, we will

communicate the problem to the authors.

This package calculates elastic constants for cubic crystals. It is described in detail by the author in
Charpin 2001.

8.14. MINI 117

8.13.1 Execution

The package is driven by three scrips:

I init elast :
It prepares the whole calculation and should be run in a directory with a valid case.struct
and case.inst file. It creates the necessary subdirectories elast , elast/eos ,
elast/tetra , elast/rhomb , elast/result , the templates for tetragonal and rhombo-
hedral distortion and initializes the calculations using init lapw .

I elast setup :
It should be run in the elast directory, generates the distorted struct-files and eos.job ,
rhomb.job and tetra.job . These scripts must be adapted to your needs (spin-
polarization, convergence,...) and run. elast setup can be run several times (for different
distortions,...).

I ana elast :
Once all calculations are done, change into elastresult and run this script. The final
results are stored in elastresultoutputs .

I genetempl, setelast, anaelast :
These three small programs are called by the above scripts.

8.14 MINI (Geometry minimization)

This program is usually called from the script min lapw and performs movements of the atomic
positions according to the calculated forces. It generates a new case.struct file which can be
used in the next geometry/time step. Depending on the input options, mini helps to find the
equilibrium positions of the atoms -using a damped Newton dynamics or a Broyden-Fletcher-
Goldfarb-Shanno (BFGS) variable metric method- (see Kohler et al. 1996) or performs a molecular
dynamics simulation. The forces are read from a file case.finM , while the “history” of the geom-
etry optimization or MD is stored in case.tmpM

Note: We also tried several charge density extrapolation schemes, so that the new scf-run can be performed
with a better starting density. However, they are currently not activated.

8.14.1 Execution

The program mini is executed by invoking the command:

mini mini.def or x mini

8.14.2 Dimensioning parameters

The following dimensioning parameters are collected in the file param.inc :

MAXIT maximum number of geometry steps
NRAD number of radial mesh points
NCOM number of LM terms in density
NNN number of neighboring atoms for nn
NSYM order of pointgroup

118 CHAPTER 8. ANALYSIS, PROPERTIES AND OPTIMIZATION

8.14.3 Input

Two examples are given below; one for molecular dynamics using a NOSE thermostat and one for
a Newton geometry optimization:

Input for Molecular dynamics:

---------------- top of file: nbc.inM --------------------
NOSE (NOSE/MOLD (a4))
58.9332 400. 1273. 5.0 (Masse, delta t, T, nose-frequency)
58.9332 400. 1273. 5.0
58.9332 400. 1273. 5.0
58.9332 400. 1273. 5.0
58.9332 400. 1273. 5.0
58.9332 400. 1273. 5.0
------------------- bottom of file ------------------------

Interpretive comments on this file are as follows.

line 1: format(a4,f5.2)

MINMOD Modus of the calculation
MOLD Performs next molecular dynamics timestep
NOSE Performs next molecular dynamics timestep using a NOSE thermostat

line 2: free format

MASS Atomic mass of ith atom
TIMESTEP Time step of MD (in atomic units, depends on highest vibrational fre-

quencies)

TEMP Simulation Temperature (K)

NOSF Nose-frequency

>>>line 2: must be repeated for every atom

Input for geometry optimization:

---------------- top of file: nbc.inM --------------------
NEWT 2.0 (NEWT/BFGS tolf (a4,f5.2))
0.3 0.3 0.3 0.8 (1..3:delta, 4:eta(1=friction zero))
0.3 0.3 0.3 0.8 (1..3=0 constraint)
------------------- bottom of file ------------------------

Interpretive comments on this file are as follows.

line 1: format(a4,f5.2)

MINMOD Modus of the calculation
NEWT Performs geometry optimization with damped Newton scheme accord-

ing to
Rτ+1
m = Rτm + ηm(Rτm −Rτ−1

m) + δmF
τ
m

whereRτm and F τm are the coordinate and force at time step τ . When the
force has changed its direction from the last to the present timestep (or
is within the tolerance TOLF), ηm will be set to 1− ηm.

8.15. OPTIC 119

BFGS Performs geometry optimization with the variable metric method of
BFGS. This option works well when a quadratic approximation is a
good approximation to the specific potential surface

TOLF Force tolerance, determines when geometry optimization stops

line 2: free format

DELTA(1-
3)

x,y,z-delta parameters for damped Newton scheme. Determines speed
of motion. Good values must be found for each individual system.
They depend on the atomic mass, the vibrational frequencies and the
starting point. DELTA(i) = 0 constrains the corresponding i-th coordi-
nate (both in NEWT and BFGS)

ETA damping (friction) parameter for damped Newton scheme. ETA=1
means no friction, ETA=0 means no speed from previous time steps

>>> line 2: must be repeated for every atom

8.15 OPTIC (calculating optical properties)

This program was contributed by:

	

Claudia Ambrosch-Draxl
Institut für Theoretische Physik
Universität Graz
Universitätsplatz 5
A-8010 Graz, AUSTRIA
email: claudia.ambrosch@uni-graz.at
Please make comments or report problems with this program to the WIEN-mailinglist. If necessary, we will

communicate the problem to the authors.

The calculation of optical properties requires a dense mesh of eigenvalues and the corresponding
eigenvectors. For that purpose start kgen and generate a fine k-mesh (with many k-points). Run
lapw1 and then lapw2 with the option FERMI (Note: You must also put TETRA / value=101. or
ROOT/ALL in case.in2) in order to generate the weight-file. After the vector-file has been gener-
ated by lapw1 run optic in order to produce the momentum matrix elements. Then the program
joint carries out the BZ integration and computes the imaginary part of the complex dielectric
tensor. In order to obtain the real part of the dielectric tensor kram may be executed which uses
the Kramers-Kronig relations.

The program optic generates the momentum matrix elements

Mi =< n′~k|~p.~ei| n~k >
between all band combinations for each k-point given in the vector-file. For the orthogonal lattices
the squared diagonal components can be found in the file case.outmat . For non-orthogonal
systems all 6 components (Mj)∗Mk can be calculated according to the symmetry of the crystal. In
systems without inversion symmetry the complex version opticc must be executed.

The dielectric tensor components (and other quantities) are given per spin in case of the spin-
polarized calculation and as a sum of both spin directions if the calculation is non-spinpolarized.

Due to spin-orbit coupling imaginary parts of the nondiagonal elements may occur. This in general,
up to 9 components can be calculated at the same time.

120 CHAPTER 8. ANALYSIS, PROPERTIES AND OPTIMIZATION

8.15.1 Execution

The program optic is executed by invoking the command:

optic(c) optic.def or x optic [-c -up|dn -so]

Recommended procedure for spin-orbit coupling:

In order to get the correct matrix elements, the files case.vectorso[up|dn] have to be used.
For that purpose the following procedure is recommended:

I run SCF cycle: run[sp] lapw -so
I generate a fine k-mesh for the optics part: x kgen
I change TOT to FERMI in case.in2c
I execute run[sp] lapw -so -s lapw1 -e lcore with this fine k-mesh
I run optic: x opticc -so [-up]
I run joint: x joint [-up]
I run kram: x kram [-up]

Note: Also in the spin-polarized case only one call to optic , joint and/or kram (either up or down) is
necessary, since the spins are not independent any more and both vector-files are used at the same time.

8.15.2 Dimensioning parameters

The following dimensioning parameters (listed in param.inc r and param.inc c) are used:

LMAX highest l+1 in basis function inside sphere (consistent with input in case.in1)
LOMAX highest l for local orbital basis (consistent with input in case.in1)
NRAD number of radial mesh points
NSYM order of point group

8.15.3 Input

An example is given below:

---------------- top of file: case.inop --------------------
256 1 : NKMAX, NKFIRST
-5.0 2.0 : EMIN, EMAX
2 : number of choices (columns in *outmat)
1 : Re xx
3 : Re zz
------------------- bottom of file -------------------------

Interpretive comments on this file are as follows:

line 1: free format

nkmax,
nkfirst

maximal number of k-points , number of k-point to start calculation

line 2: free format

emin,
emax

absolute energy range (Ry) for which matrix elements should be calcu-
lated

8.16. JOINT 121

line 3: free format

ncol number of choices (columns in case.outmat)

line 4+: free format

icol column to select. Choices are:
1 . . . Re < x >< x >
2 . . . Re < y >< y >
3 . . . Re < z >< z >
4 . . . Re < x >< y >
5 . . . Re < x >< z >
6 . . . Re < y >< z >
7 . . . Im < x >< y >
8 . . . Im < x >< z >
9 . . . Im < y >< z >
Options 7-9 apply only in presence of SO, options 4-6 only in non-
orthogonal cases.

8.16 JOINT (Joint Density of States)

This program was contributed by:

	

Claudia Ambrosch-Draxl
Institut für Theoretische Physik
Universität Graz
Universitätsplatz 5
A-8010 Graz, AUSTRIA
email: claudia.ambrosch@uni-graz.at
Please make comments or report problems with this program to the WIEN-mailinglist. If necessary, we will

communicate the problem to the authors.

This program carries out the BZ integration using the momentum matrix elements calculated be-
fore by optic . The interband or the intraband contributions to the imaginary part of the dielectric
tensor can be computed. Alternatively, the DOS or the joint DOS can be derived.

The output in case.joint can be plotted with an xy-plotting package.

Warning: Negative values for ε2 may occur due to negative weights in Blöchl’s tetrahedron method.

8.16.1 Execution

The program joint is executed by invoking the command:

joint joint.def or x joint [-up|dn]

8.16.2 Dimensioning parameters

The following parameter is listend in files param.inc :

NSYM order of point group
MG number of columns

122 CHAPTER 8. ANALYSIS, PROPERTIES AND OPTIMIZATION

Note: The program might become very large if MG is set to a large value!

8.16.3 Input

An example is given below:

---------------- top of file: case.injoint -----------------------
1 40 : LOWER AND UPPER BANDINDEX

-0.0000 0.00100 2.0000 : EMIN DE EMAX FOR ENERGYGRID IN ryd
eV : output units eV / ryd

4 : SWITCH
2 : NUMBER OF COLUMNS

0.1 0.1 0.3 : BROADENING (FOR DRUDE MODEL - switch 6,7)
------------------- bottom of file -------------------------------

Interpretive comments on this file are as follows:

line 1: free format

b1, b2 lower and upper band index

line 2: free format

emin,
de,
emax

Energy window and increment in Ry

line 3: free format

units eV output in units of eV
Ry output in units of Ry

line 4: free format

switch 0 joint DOS for each band combination
1 joint DOS as sum over all band combinations
2 DOS for each band
3 DOS as sum over all bands
4 imaginary part of the dielectric tensor (ε2)
5 imaginary part of the dielectric tensor for each band combination
6 intraband contributions: number of “free“ electrons per unit cell as-

suming bare electron mass (calculated around EF ± 10 ∗ de as defined
in input line 4), plasma-frequency

7 in addition to switch 6 the contributions from different bands to the
plasma frequency are analyzed.

line 5: free format

ncol number of columns

line 6: free format
broadening

x,y,z broadening parameters (in units defined in line 3) for Drude-model

The band analysis for all options (switches 0, 2, 5, and 7) has been improved: For each tensor
component additional files are created, where each column contains the contributions from a single

8.17. KRAM 123

band or band combination. The file names are e.g. case.Im eps xx 1, case.Im eps xx 1, or
case.jdos 1 etc. where the number of files depend on the number of bands/band combinations.

Warning: The number of band combinations might be quite large!

8.17 KRAM (Kramers-Kronig transformation)

This program was contributed by:

	

Claudia Ambrosch-Draxl
Institut für Theoretische Physik
Universität Graz
Universitätsplatz 5
A-8010 Graz, AUSTRIA
email: claudia.ambrosch@uni-graz.at
Please make comments or report problems with this program to the WIEN-mailinglist. If necessary, we will

communicate the problem to the authors.

The Kramers-Kronig analysis is carried out for the actual number of columns contained in the
case.joint[up|dn] file. For each real component its imaginary counterpart is created and vice
versa. All dielectric tensor components can be found in file case.epsilon[up|dn] . The real and
imaginary parts of the optical conductivity (in 1015/s) are written to file case.sigmak[up|dn] .
In addition, file case.absorp contains the real parts of the optical conductivity (in 1/(Ωcm) and
the absorption coefficients. The loss function is also calculated (case.eloss), where for the previ-
ously calculated Plasma-frequency the intraband contributions can be added. The 3 sumrules are
checked and written to case.sumrules .

The output in case.epsilon[up|dn] and case.sigmak[up|dn] can be plotted with an xy-
plotting package.

8.17.1 Execution

The program kram is executed by invoking the command:

kram kram.def or x kram [-up|dn]

8.17.2 Dimensioning parameters

The following parameters are listed in files param.inc :

MAXDE maximum number of points in energy mesh
MPOL fixed at 6

8.17.3 Input

An example is given below:

---------------- top of file: case.inkram -----------------------

124 CHAPTER 8. ANALYSIS, PROPERTIES AND OPTIMIZATION

0.0 gamma for Lorentz broadening (in units selected in joint)
0.0 energy shift (scissors operator) (in units selected in joint)

1 add intraband contributions? yes/no: 1/0
12.60 plasma frequencies

0.20 Gammas for Drude terms
------------------- bottom of file -------------------------------

Interpretive comments on this file are as follows:

line 1: free format

EGAMM Lorentz broadening (in energy units selected in joint)

line 2: free format

ESHIFT Energy shift (scissors operator) (in energy units selected in joint)

line 3: free format

INTRA 0 Intraband contributions are not added
1 Intraband contributions are added (requires plasma-frequency)

line 4: free format

EPL Plasma-frequency (calculated by joint using SWITCH=6)

line 5: free format

EDRU Broadening for Drude terms

8.18 FSGEN (Fermi-surface generation)

Unfortunately there is no really versatile tool for Fermi surface generation or analyzing FS proper-
ties. We have collected here a series of small programs together with some description on how to
proceed to generate 2D-Fermisurfaces within WIEN.

I As usually, you have to run an scf cycle and determine a good Fermi-energy. ”Good” means
here a Fermi-energy coming from a calculation with a dense k-mesh.

I You should than create a mesh within a plane of the BZ, where you want to plot the FS. Some
utility programs like sc fs mesh, (fcc, bcc and hex are also available) may help you here,
but only some planes of the BZ have been implemented so far. Please check these simple
programs and modify them according to your needs. Insert the generated k-mesh fort.2
into case.in1 .

I Run lapw1 with this k-mesh.
I Run spaghetti with input-options such that it prints the bands which intersect EF to

case.spaghetti ene (line 6, see sec. 8.3)
I Edit case.spaghetti ene and insert a line at the top:

NX, NY, x-len, y-len, NXinter, NYinter, Invers, Flip
where
NX, NY are the number of points in the two directions
x-len, y-len are the lenght of the two directions of the plane (in bohr−1, you can find this in
case.spaghetti ene)
NXinter, NYinter: interpolated mesh, e.g. 2*NX-1

8.18. FSGEN 125

Invers: 0/1: mirrors x,y
FLIP: 0/1: flips x,y to y,x

I Run spagh2rho < case.spaghetti ene to convert from this format into a format which
is compatible with the case.rho file used for charge density plotting. It generates files
fort.11 , fort.12 , ... (for each band separately) and you should use your favorite plotting
program to generate a contourplot of the FS (by using a contourlevel = 0).

126 CHAPTER 8. ANALYSIS, PROPERTIES AND OPTIMIZATION

9 Utility Programs

Contents

9.1 afminput . 127
9.2 clmcopy . 128
9.3 reformat . 129
9.4 hex2rhomb and rhomb in5 . 129
9.5 eosfit . 130
9.6 spacegroup . 130
9.7 analyse . 130

9.8 StructGenTM of w2web . 131
9.9 Visualization . 131

9.1 afminput

This program helps to determine an input for clmcopy , which is a program which copies spin-up
densities of atom 1 to spin-down densities of atom 2 and vice versa in an anti-ferromagnetic ar-
rangement. It uses case.clmup and case.clmdn to find out how and which atoms (and Fourier
coefficients) must be interchanged. Therefore ”exact” antiferromagnetic densities are necessary,
generated either by using the appropriate starting densities from dstart (after you put AFM con-
figuration in case.inst) or after a very well converged SCF calculation. Please see the comments
in sect. 4.5.4 on how to proceed in detail for AFM calculations.

There is no other input file, but you may be ask to decide, whether two densities are ”equal” or
not.

9.1.1 Execution

The program afminput is executed by invoking the command:

afminput afminput.def or x afminput

9.1.2 Dimensioning parameters

The following parameters are used:

NCOM number of LM components in the density (in param.inc)
NDIG number of significant digits for ”equivalency” of density components

127

128 CHAPTER 9. UTILITY PROGRAMS

NDIG1 as above for Fouriercoefficients
EMIN exponent of a density component, which will be considered as ”zero” in the pro-

gram

9.2 clmcopy

This program generates the spin-dn density (case.clmdn) from a given spin-up density
(case.clmup) according to rules in case.inclmcopy (generated earlier by afminput) for an
AFM calculation. Please see the comments in sect. 4.5.4 on how to proceed in detail for AFM
calculations.

9.2.1 Execution

The program clmcopy is executed by invoking the command:

clmcopy clmcopy.def or x clmcopy

9.2.2 Dimensioning parameters

The following parameters are used in param.inc :

NCOM number of LM components in the density
NRAD number of radial mesh points
NSYM number of symmetryoperations

9.2.3 Input

An example is given below:

---------------- top of file: case.inclmcopy -----------------------
3 NUMBER of ATOMS to CHANGE
1 2 INTERCHANGE these ATOMS
0 NUMBER of LM to CHANGE SIGN

LM list
3 3 INTERCHANGE these ATOMS
4 NUMBER of LM to CHANGE SIGN

2 2 4 2 6 2 6 6 LM list
4 4 INTERCHANGE these ATOMS
6 NUMBER of LM to CHANGE SIGN

1 0 3 0 3 2 5 0 5 2 5 4 LM list
3 NUMBER of K-VECTOR-types to change sign

x y z
odd 0 0 -1.0
odd 0 odd -1.0
evenodd 0 -1.0

9.3. REFORMAT 129

Interpretive comments on this file are as follows:

line 1: free format

NATOM Number of atoms for which rules for copying the density will be de-
fined

line 2: free format

N1, N2 Interchange spin-up and dn densities of atoms N1 and N2

line 3: free format

NLM Number of LM values, for which you have to change the sign when
swapping up and dn-densities

line 4: free format

L,M NLM pairs of L and M, for which you have to change the sign when
swapping up and dn-densities

Lines 2-4 have to be repeated NATOM times.
line 5: free format

NKK number of K-vector types, for which you have to change the sign when
swapping up and dn-densities

line 6: free format

empty line (just comments)

line 7: free format

x,y,z,factor
x,y,z character of the K-vector component. Can be even, odd or 0.
factor factor with which one multiplies the swaped up and dn Fouriercompo-

nents (usually -1.)

Line 7 has to be repeated NKK times.

9.3 reformat

To produce a surface plot of the electron density using rhoplot lapw (which is an interface to
gnuplot), data from the file case.rho created by lapw5 must be converted using reformat

The sources of the program reformat.c are supplied in SRCreformat .

9.4 hex2rhomb and rhomb in5

hex2rhomb interactively converts the positions of an atom from hexagonal to rhombohedral coor-
dinates (needed in case.struct).

130 CHAPTER 9. UTILITY PROGRAMS

rhomb in5 interactively helps to generate input case.in5 for rhombohedral systems. It defines
a plane as needed in the input file when you specify 3 atoms of that plane.

The sources of these programs are supplied in SRCtrig .

9.5 eosfit

Small program to calculate the Equation of States (EOS; Equilibrium volume V0, Bulk modulus
B0 and it’s derivative B′0). It relies on the file case.analysis created from w2web using Total
Energy and Volume.

The sources are supplied in SRCeosfit .

9.6 spacegroup

This program was contributed by:

	

Vaclav Petricek
Institute of Physics
Academy of Sciences of the Czech Republic
Na Slovance 2
182 21 Praha (Prague) 8
Czech Republic
petricek@fzu.cz
Please make comments or report problems with this program to the WIEN-mailinglist. If necessary, we will

communicate the problem to the authors.

Interactive program to generate equivalent positions for a given spacegroup and lattice. The pro-
gram is also used internally from w2web to generate positions when selecting spacegroups in the
StructGenTM.

9.7 analyse

This program was contributed by:

	
Hartmut Enkisch
Institute of Physics E1b
University of Dortmund
Dortmund, Germany
enkisch@pop.uni-dortmund.de
Please make comments or report problems with this program to the WIEN-mailinglist. If necessary, we will

communicate the problem to the authors.

analyse reads data from case.scf and writes them into analyse.dat . For each iteration it
writes one line containing the parameters specified in the command line. analyse is meant to
work in conjunction with the scfmonitor script (see 5.2.5).

9.8. STRUCTGENTM OF W2WEB 131

9.8 StructGenTM of w2web

The new StructGenTM helps to generate the master input file case.struct . It has the following
additional features:

I automatic conversion from/to Å and Bohr
I Use spacegroup information (in conjunction with the spacegroup program (see 9.6 to gen-

erate equivalent positions)
I built in calculator to carry out simple arithmetic operations to specify the position parameters

(of the equivalent atoms). Each position of equivalent atoms can be entered as a number, a
fraction (e.g. 1/3) or a simple expression (e.g. 0.21 + 1/3). The first position defines the
variables x, y and z, which can be using in expression defining the other positions (e.g. −y,
x, −z + 1/2).

9.9 Visualization

9.9.1 BALSAC

balsac (Build and Analyze Lattices, Surfaces and Clusters) was written by Klaus Hermann (Fritz-
Haber Institut, Berlin). It provides high quality postscript files. In SRC balsac-utils we provide the
following interface programs to convert from WIEN2k to balsac :

I str2lat to convert case.struct to case.lat (the BALSAC ”lat” file).
I str2plt to convert case.struct to case.plt (the BALSAC ”plt” file for one unit cell).
I outnn2plt to convert case.outputnn to case.plt (the BALSAC ”plt” file for one unit

cell). You have to select one atom (central atom) and than all nn-atoms are converted into the
plt file.

I In addition converters to the xyz-format for other plotting programs are also available.

For an example see figure 3.1 For scientific questions concerning BALSAC please contact Klaus
Hermann at hermann@FHI-Berlin.MPG.DE

Balsac is available from:

Garching Innovation GmbH, Mrs. M. Pasecky Koeniginstr. 19, D-80539 Munich, Ger-
many
Tel.: +49 89 288279, Fax.: +49 89 21081593
e-mail: 100627.1572@compuserve.com

9.9.2 XCrysDen

XCrysDen (Kokalj 1999) is a render and analysis package. It has the following features:

I render and analyze (distances, angles) the crystal structure
I generate k-mesh for bandstructure plots
I generate input and render 2D charge densities
I generate input and render 3D charge densities
I generate input and render Fermi surfaces

XCrysDen is available from:

132 CHAPTER 9. UTILITY PROGRAMS

Figure 9.1: 3D electron density in TiC generated with XCrysDen

Tone Kokalj
Jozef Stefan Institute, Dept. of Physical and Organic Chemistry
Jamova 39, SI-1000 Ljubljana, Slovenia
Tel.: +386 61 177 3520, Fax: +386 61 177 3811
Tone.Kokalj@ijs.si

10 How to run WIEN2k for selected
samples

Three test cases are provided in the WIEN2k package. They contain the two starting files
case.struct and case.inst and all the output so that you can compare your results with
them.

The test cases are the following (where the names correspond to what was called CASE in the rest
of this User’s Guide)

TiC
Fccni
TiO2

We recommend to run these test cases (in a different directory) and compare the output to the
provided one. All test cases are setup such that the CPU-time remains small (seconds). For real
production runs the value of RKMAX in case.in1 must be increased and a better (denser) k-mesh
should be used.

In addition we provide a subdirectory example struct files were various more complicated
struct files can be found.

10.1 TiC

The TiC example is described in detail in chapter 3 (Quickstart).

10.2 Fcc Nickel (spin polarized)

Ferromagnetic Nickel is a test case for a spin-polarized calculation. Ni has the atomic configuration
1s2, 2s2, 2p6, 3s2, 3p6, 3d8, 4s2 or [Ar] 3d8, 4s2. We treat the 1s, 2s, 2p and 3s as core states, and 3p
(as local orbital), 3d, 4s and 4p are handled as valence states. In a spin-polarized calculation the file
structure and the sequence of programs is different from the non-spin-polarized case (see 4.5.2).

Create a new session and its corresponding directory. Generate the structure with the following
data (we can use a large sphere as you will see from the output of nn):

133

134 CHAPTER 10. EXAMPLES

Title fcc Ni
Lattice F
a 6.7 bohr
b 6.7 bohr
c 6.7 bohr
α, β, γ 90
Atom Ni, enter position (0,0,0) and RMT = 2.3

Initialize the calculation using the default RKmax and use 3000 k-points (a ferromagnetic metal
needs many k-points to yield reasonably converged magnetic moments). Allow for spin-
polarization.

Start the scf cycle (runsp lapw). At the bottom of the converged scf-file (Fccni.scf) you find the
magnetic moments in the interstital region, inside the sphere and the total moment per cell (only
the latter is an “observable”, the others depend on the sphere size).

:MMINT: MAGNETIC MOMENT IN INTERSTITIAL = -0.03266
:MMI01: MAGNETIC MOMENT IN SPHERE 1 = 0.65679
:MMTOT: TOTAL MAGNETIC MOMENT IN CELL = 0.62413

10.3 Rutile (TiO2)

This example shows you how to “optimize internal parameters”.

Create a new session and its corresponding directory. Generate the structure with the following
data (we use a smaller O sphere because Ti-d states are harder to converge then O-p):

Title TiO2
Spacegroup P42/mnm (136)
a 8.682 bohr
b 8.682 bohr
c 5.592 bohr
α, β, γ 90
Atom Ti, enter position (0,0,0) and RMT = 2.0
Atom O, enter position (0.3,0.3,0) and RMT = 1.6

StructGenTMshould automatically add the equivalent positions.

Initialize the calculation using RKmax=6.5 in tio2.in1 st and use 100 k-points and a “shift“ in
kgen .

If you have a parallel machine, create a .machine file (possibly with 9 (or 3) processors since we
have 9 k-points, for details see 5.4). You can use “Execution o Run scf”, activate the “parallel”
button” and “start scf” in w2web, or the UNIX command

cp $WIENROOT/SRC templates/.machine .

Then start the structure minimization in w2web using “Executionomini.positions”. This will gen-
erate TiO2.inM , which you should edit and change the “stepsize” from 5.0 to 3.0. For execution
you can either use the defaults or put

run lapw -I -p -fc 1.0

as job (for parallel execution).

Alternatively you can use

10.3. RUTILE 135

cp $WIENROOT/SRCtemplates/case.inM TiO2.inM
emacs TiO2.inM (and change all 5.0 to 3.0)
min lapw -j ‘‘run lapw -I -fc 1 -p’’

This will start an scf cycle, call the program min , which generates a new struct file using the cal-
culated forces, and continues with the next scf cycle. It will continue until the forces are below 1
mRy/bohr (TiO2.inM) and the final results are not “saved” automatically but can be found in the
“current” calculation.

You can watch the minimization using the file TiO2.scf mini , which contains the final iteration
of each geometry step. If the forces in this file oscillate from plus to minus and seem to diverge,
or if they change very little, you can edit TiO2.inM (reduce or increase the stepsize), and remove
TiO2.tmpM (contains the “history” of the minimization and is used to calculate the velocities of
the moving atoms).

The final structural parameter of the O-atom should be close to x=0.304, which compares well with
the experimental x=0.305.

136 CHAPTER 10. EXAMPLES

Part III

Installation of the WIEN2k package
and Dimensioning of programs

137

11 Installation and Dimensioning

Contents

11.1 Requirements . 139
11.2 Installation of WIEN2k . 140
11.3 w2web . 143
11.4 Environment Variables . 144

11.1 Requirements

WIEN2k is written in FORTRAN 90 and requires a UNIX operating system since the programs
are linked together via C-shell scripts. It has been implemented successfully on the following
computer systems: Intel Pentium PCs running under Linux, IBM RS6000, HP, SGI, DEC Alpha and
SUN. Hardware requirements will change from case to case (small cases with 10 atoms per unit cell
can be run on a Pentium-II PC with 128 MB under Linux), but we recommend a more powerful PC
or workstation with at least 256 MB (better 512 MM or more) memory and plenty of disk space (a
few Gb).

For coarse grain parallization on the k-point level, a cluster of PCs with a 100 Mb/s network is suf-
ficient. Faster communication is recommended for the fine grain (single k-point) parallel version.

In order to use all options and features (such as the new graphical user interface w2web or some
of its plotting tools) the following public domain program packages in addition to a F90 compiler
must be installed:

I perl 5 or higher (for w2web only)
I emacs or another editor of your choice
I ghostscript (with jpg support)
I gnuplot (with png support)
I www-browser
I pdf-reader, acroread
I MPI+SCALAPACK (for fine grain parallelization only)
I Tcl/Tk-Toolkit (for Xcrysden only)

Usually these packages should be available on modern systems. If one of these packages is not
available it can either be installed from public domain sources (ask your computing center, use the
WWW to search for the nearest location of these packages) or the corresponding configuration may
be changed (e.g. using vi instead of emacs). None of the principal components of WIEN2k requires
these packages, only w2web needs them.

139

140 CHAPTER 11. INSTALLATION AND DIMENSIONING

11.2 Installation of WIEN2k

11.2.1 Expanding the WIEN2k distribution

The WIEN2k package comes as a single tar file (or you can download about 50 individual tar
files separately), which should be placed in a subdirectory which will be your $WIENROOTdi-
rectory (e.g. ./WIEN2k). In addition you can download three examples, namely TiC.tar.gz,
TiO2.tar.gz and Fccni.tar.gz .

Uncompress and expand all files using:

tar -xvf wien2k 00.tar (skip this if you downloaded files separately)
gunzip *.gz
chmod +x ./expand lapw
./expand lapw

You should have gotten the following directories:

./lapw
SRC
SRC_afminput
SRC_aim
SRC_analyse
SRC_balsac-utils
SRC_clmcopy
SRC_dstart
SRC_elast
SRC_eosfit
SRC_filtvec
SRC_fsgen
SRC_initelnes
SRC_initxspec
SRC_irrep
SRC_joint
SRC_kgen
SRC_kram
SRC_lapw0
SRC_lapw1
SRC_lapw2
SRC_lapw3
SRC_lapw5
SRC_lapw7
SRC_lapwdm
SRC_lapwso
SRC_lcore
SRC_lib
SRC_lorentz
SRC_lstart
SRC_mini
SRC_mixer
SRC_nn
SRC_optic
SRC_optimize
SRC_reformat
SRC_sgroup
SRC_spacegroup
SRC_spaghetti
SRC_sumpara
SRC_symmetry
SRC_telnes
SRC_templates
SRC_tetra
SRC_trig
SRC_txspec
SRC_usersguide_html
example_struct_files
TiC
TiO2
fccni

11.2. INSTALLATION OF WIEN2K 141

Thus, each program has its source code (split into several files) in its own subdirectory. All pro-
grams are written in FORTRAN90 (except SRC sgroup and SRC reformat, which are in C).

/SRC contains the users guide (in form of a postscript file usersguide.ps and as pdf-file users-
guide.pdf), all c-shell scripts and some auxiliary files.

/SRC usersguide html contains the html version of the UG.

/Fccni , /TiC and /TiO2 contain three example inputs and the respective outputs.

/example struct files contains a collection of various struct files, which could be of use espe-
cially for the less experienced user.

/SRC templates contains various input templates.

In addition to the expansion of the tar-files ./expand lapw copies also all csh-shell scripts from
/SRC to the current directory and creates links for some abbreviated commands.

11.2.2 Site configuration for WIEN2k

At the end of expand lapw you will be prompted to start the script

./siteconfig lapw

When you start this script for the first time (file INSTALLDATE not present), you will be guided
through the setup process.

Later on you can use siteconfig lapw to redimension parameters, update individual packages
and recompile the respective programs.

During the first run, you will be asked to specify:

I your system; at this point system specific files (e.g. cputim.f will be installed. If your
system is not listed, use the system generic, which should compile on any machine.

I your FORTRAN90 and C compilers;
I your compiler and linker options as well as the place for LAPACK and BLAS libraries. De-

pending on the system you selected, we have included some recommended compiler and
linker options, which are known to work on our systems (use generic when you have prob-
lems here; see also sec. 11.2.4). On some systems it is required to specify LAPACK and BLAS
libraries twice (i.e. R LIBS:-llapack lapw -lblas lapw -llapack lapw -lblas lapw). This gener-
ates Makefiles from the corresponding Makefile.orig in all subdirectories.

I configuration of parallel execution will ask whether your system is shared memory, so that
default parameters can be set accordingly ($WIENROOT/parallel options is the file
where this information is stored).

I to configure parallel execution for distributed systems, specify the command to open a remote
shell, which on most systems is rsh or ssh .

I You will then be asked wether you want to run fine-grained parallel. This is only possible if
MPI and SCALAPACK are installed on your system and requires a fast network (100Mb/s
is not very good) or a shared memory machine. It pays off only for big cases (matrixsize >
5000).

I You should define NMATMAX, i.e. the maximum matrixsize (number of basisfunctions).
This value should be adjusted according to the memory of your hardware. Rough estimates
are:
NMATMAX= 5000 ==> 256MB (real) or 500MB (complex, without inversion symmetry)
NMATMAX=10000 ==> 1GB (real) (==> cells with about 80-150 atoms/unitcell) If you
choose it too large, lapw1 will start to “page” leading to inacceptable performance or a crash.

I Now you are prompted to compile all programs (this will be done using make) and the exe-
cutables are copied to the $WIENROOTdirectory.

142 CHAPTER 11. INSTALLATION AND DIMENSIONING

Compilation might take quite some time. After compilation you will find a file compile.msg in
each SRC* directory.

Later on you can use siteconfig lapw to change parameters, options or to update a package.

11.2.3 User configuration

Each WIEN2k user should run the script userconfig lapw . This will setup a proper environment.

The script userconfig lapw will do the following for you:

I set a path to WIEN2k programs
I add aliases, and
I add environment variables ($WIENROOT) to your ˜/.cshrc file.

Note: This will work only when the csh, tcsh or bash-shell is your login shell. Depending on your settings
you may have to add similar lines also in your .login file. If you are using a different login-shell, edit your
startup files manually.

11.2.4 Performance and special considerations

The script siteconfig lapw is provided for general configuration and compilation of the
WIEN2k package. When you call this script for the first time and follow the suggested answers,
WIEN2k should run on your system (see 11.2.2).

The codes in the individual subdirectories /SRC program are compiled using make. The file
Makefile is generated during installation using Makefile.orig as template.

In some directories the source files *.frc, *.F and param.inc r/c contain both, the real and
complex (for systems without inversion symmetry) version of the code. You create the corespond-
ing versions with make and make complex, respectively. (The *.frc and *.F files will then be
preprocessed automatically).

The fine-grained parallel versions lapw0 mpi; lapw1 mpi, lapw1c mpi, lapw2 mpi,
lapw2c mpi are created using make para (lapw0) and make rp; make cp .

For timing purposes a subroutine CPUTIM is used in several programs and specific routines for
IBM-AIX, HP-UX, DEC-OSF1, SGI and SUN are available. On other systems cputim generic.c
should work.

On some HP systems you may encounter problems like: “stack growth failure”. You may recom-
pile with -K, reconfigure your Unix-kernel (with increased stack-size) or put large arrays in the
respective program into COMMONS.

Most of the CPU time will be spent in lapw1 and (to a smaller extent) in lapw2 and lapw0 .
Therefore we recommend to optimize the performance for these 3 programs:

I Find out which compiler options (man f90) make these programs run faster. You could
specify a higher optimization (-O3), specify a particular processor architecture (-qarch=pp2
or -R10000,) or a preprocessor (like kapp or vast).

I Good performance depends on highly optimized BLAS and LAPACK libraries.
Whenever it is possible, replace the supplied libraries (SRClib/blas lapw and
SRClib/lapack lapw), by routines from your vendor (essl on IBM, complib.sgimath on
SGI, dxml on DEC, try also blas, nag, or imsl libraries). If such libraries are not available try to
optimize them yourself using the “ATLAS” system. (see http://math-atlas.sourceforge.net).
We provide an ATLAS-BLAS for a Pentium4 with WIEN2k.

11.3. W2WEB 143

11.2.5 Global dimensioning parameters

WIEN2k is written in Fortran 90 and all important arrays are allocated dynamically. The only im-
portant parameters left are NMATMAX and NUME, specifying the maximum matrixsize (should
be adjusted to the memory of your hardware, see above) and the maximum number of eigenvalues
(must be increased for unitcells with large number of electrons)

Some less important parameters are still present and described in chapter “dimensioning parame-
ters“ of the respective section in chapter 6.

We recommend to use siteconfig lapw for redimensioning and recompilation. In order to work
properly, the parameter XXXX in the respective param.inc files must obey the following syntax:

PARAMETER(XXXX=)

Note: between “(“, XXXX and “=” there must be no space.

11.3 Installation and Configuration of w2web

11.3.1 General issues

w2web requires perl , which should be available on most systems. (If not contact your system
administrator or install it yourself from the WWW)

When you start w2web for the first time on the computer where you want to execute WIEN2k (you
may have to telnet, ssh,.. to this machine) with the command w2web [-p xxxx] , you will be
asked for a username/password (I recommend you use the same as for your UNIX login).

Later on you can add/remove users using “Configuration o edit accounts “.

You must also specify a “port” number (which can be changed the next time you start w2web).
If the default port (7890) used to serve the interface is already in use by some other process,
you will get the error message w2web failed to bind port 7890 - port already in
use! . Then you will have to choose a different port number (between 1024 and 65536) . Please
remember this port number, you need it when connecting to the w2web server.

Note: Only user root can specify port numbers below 1024!

Once w2web has been started, use your favorite WWW-browser to connect to w2web, specifying
the correct portnumber, e.g. netscape http://hostname where w2web runs:7890

Using “Configuration o interface configuration” you can further tailor the behaviour according to
your wishes. In particular you can define new “execution types” to adjust to your queuing system.
For example the line
batch=batch <%f
defines an execution type “batch” using the UNIX batch command. w2web collects its commands
in a temporary script and you can access it using %f.

w2web saves several variables in startup files which are in the (˜/.w2web) directory.

11.3.2 How does w2web work?

w2web acts like a normal web-server - except that it runs on a ”user level port” instead of the
default http-port 80. It serves html-files and executes perl-scripts or executes system or user com-
mands on the server host.

144 CHAPTER 11. INSTALLATION AND DIMENSIONING

11.3.3 w2web-files in you home directory

w2web creates on the first run the directory .w2web in your home directory with the following
content:

I .w2web/conf
I .w2web/logs
I .w2web/sessions

11.3.4 The password file conf/w2web.users

This file is created during the first run of w2web, and can be managed from within ”Session Man-
agement o edit accounts”, However now accounts are not activated until the next start of the
w2web-server.

If you remove this file, the next start of w2web will activate the installation procedure again.

11.3.5 Using the https-protocol with w2web

In order to use the https-protocol the perl-library Net::SSLeay in addition to the OpenSSL package
must be installed on your system. Both are freely available.

If you run w2web-server in ssl-mode you should get a site certificate for your server - in the
meantime you can use the supplied certificate in $WIENROOT/SRCw2web/bin/w2web.pem (by
setting the keyfile=... line in your w2web.conf).

This certificate will not expire until 2015. Usually browsers will complain that they do not know
the Certificate Authority who issued this certificate - if you don’t like this message, you must buy
a certificate from VeriSign, Thawte or a similar CA.

11.4 Environment Variables

WIEN2k uses the following environment variables:

WIENROOT base directory where WIEN2k is installed
PDFREADER specifies program to read pdf files (acroread, xpdf,...)
SCRATCH directory where case.vector and case.help?? are stored.
EDITOR path and name of your prefered editor
XCRYSDEN TOPDIR if this variable is set WIEN2k will activate all interface extensions to XCrys-

Den.
USE REMOTE [0|1] determines whether parallel jobs are run in background (on shared memory

machines) or using rsh. It is overridden by settings in $WIENROOT/parallel options
WIEN GRANULARITY Default granularity for parallel execution. It is overridden by setting the

granularity in the .machines file or in $WIENROOT/parallel options
WIEN EXTRAFINE if set, the residual k-points are spread one by one over the processors.

12 Trouble shooting

In this chapter hints are given for solving some difficulties that have occurred frequently. This
chapter is by no means complete and the authors would appreciate further suggestions which
might be useful for other users. Beside the printed version of the users guide, an online pdf ver-
sion is available using help lapw . You can search for a specific keyword (use ∧f keyword) and
hopefully find some information.

There is a mailing list for WIEN2k related questions. To subscribe
to this list send mail to:
majordomo@theochem.tuwien.ac.at
with the text “subscribe wien”. You will then automatically be
added to the mailing list
wien@theochem.tuwien.ac.at
Please make use of this list!

If an error occurs in one of the SCF programs, a file program.error is created and an error message
is printed into these files. The run lapw script checks for these files and will automatically stop if
a non-empty error file occurs.

Check the files case.dayfile (which is written by init lapw and run lapw), :log (where a
history of all commands using x is given) and *.error for possible explanations.

In several places the dimensions are checked. The programs print a descriptive error message and
stop.

case.outputnn: This file gives error messages if the atomic spheres overlap. But it should also
be used to check the distances between the atoms and the coordination number (same dis-
tance). If inconsistencies exists, your case.struct file may contain an error. A check for
overlapping spheres is also included in mixer and lapw1 .

case.outputd: Possible stops or warnings are:
“NO SYMMETRY OPERATION FOUND IN ROTDEF“: This indicates that in your

case.struct file either the positions of equivalent atoms are not specified correctly
(only positive coordinates allowed!!) or the symmetry operations are wrong.

case.output1: Possible stops or warnings are:
“NO ENERGY LIMITS FOUND IN SELECT“: This indicates that Etop or Ebottom could not

be found for some ul(r, El). Check your input if it happens in the zeroth iteration. Later,
(usually in the second to sixth iteration) it may indicate that in your SCF cycle some-
thing went wrong and you are using a crazy potential. Usually it means that mixing
was too big and large charge fluctuations occured. Check previous charges for being
physically reasonable (grep for labels :NTOxx :CTOxx :DIS). You will probably have to
delete case.broy* and case.scf , rerun x dstart and reduce the mixing parameter
in case.inm . In very difficult (magnetic) cases a PRATT mixing with 0.01 mixing might
be necessary at the beginning!

145

146 CHAPTER 12. TROUBLE SHOOTING

“STOP RDC 22“: This indicates that the overlap matrix is not positive definite. This usually
happens if your case.struct file has some error in the structure or if you have an
(almost) linear dependent basis, which can happen for large RKMAX values and/or if
you are using very different (extremely small and large) sphere radii RMT .

“X EIGENVALUES BELOW THE ENERGY emin“: This indicates that X eigenvalues were
found below emin. Emin is set in case.in1 (see sec. 7.2.3) or in case.klist gener-
ated by KGEN, see 6.3, 6.5). It may indicate that your value of emin is too high or the
possibility of ghostbands, but it can also be intentional to truncate some of the low lying
eigenvalues.

If you don’t find enough eigenvalues (e.g.: in a cell with 4 oxygens you expect 4 oxygen s
bands at roughly -1 Ry) check the energy window (given at the end of the first k-point
in case.in1 or in case.klist) and make sure your energy parameters are found by
subroutine SELECT or set them by hand at a reasonable value.

case.output2: Possible stops or warnings are:

“CANNOT BE FOUND“: This warning, which could produce a very long output file, in-
dicates that some reciprocal K-vector would be requested (through the k-vector list of
lapw1), but was not present in the list of the K generated in lapw2. You may have
to increase the NWAV, and/or KMAXx parameters in lapw2 or increase GMAX in
case.in2 . The problems could also arise from wrong symmetry operations or a wrong
structure in case.struct .

“QTL-B VALUE“: If larger than a few percent, this indicates the appearance of ghost bands,
which are discussed below in section 12.1.
The few percent message (e.g up to 10 %) does not indicate a ghost band, but can happen
e.g. in narrow d-bands, where the linearization reaches its limits. In these cases one can
add a local orbital to improve the flexibility of the basis set. (Put one energy near the top
and the other near the bottom of the valence band, see section 7.2.3).

FERMI LEVEL not converged (or similar messages). This can have several reasons: i) Try a
different Fermi-Method (change TETRA to GAUSS or TEMP in case.in2). ii) Count
the number of eigenvalues in case.output1 and compare it with the number of va-
lence electrons. If there are too few eigenvalues, either increase EMAX in case.klist
(from 1.5 to e.g. 2.5) or check if your scf cycle had large charge oszillations (see SELECT
error above)

If the SCF cycle stops somewhere (especially in the first few iterations), it is quite possible, that
the source of the error is actually in a previous part of the cycle or even in a previous (e.g. the
zeroth) iteration. Check in the case.scf file previous charges, eigenvalues, . . . whether they are
physically reasonable (see SELECT error above).

12.1 Ghost bands

Approximate linear dependence of the basis set or the linearization of the energy dependence of
the radial wave functions (see section 2.2) can lead to spurious eigenvalues, termed “ghost bands”.

The first case may occur in a system which has atoms with very different atomic sphere radii.
Suppose you calculate a hydroxide with very short O-H bonds so that you select small RMT radii
for O and H such as e.g. 1.0 and 0.6 a.u., respectively. The cation may be large and thus you
could choose a large RMT of e.g. 2.4 a.u. However, this gives a four time larger effective RKmax
for the cation than for H, (e.g. 16.0 when you select RKmax=4.0 in case.in1). This enormous
difference in the convergence may lead to unphysical eigenvalues. In such cases choose lmax=12
in case.in1 (in order to get a very good re-expansion of the plane waves) and reduce RMT for
the cation to e.g. 1.8 a.u.

12.1. GHOST BANDS 147

The second case can occur when you don’t use a proper set of local orbitals. In this situation the
energy region of interest (valence bands) falls about midway between two states with different
principle quantum numbers, but with the same l-value (for one atom).

Take for example Ti with its 3p states being occupied as (semi-core) states, while the 4p states remain
mostly unoccupied. In the valence band region neither of those two states (Ti 3p, 4p) should appear.
If one uses 0.2 Ry for the expansion energy E(1) for the p states of Ti, then Ti-p states do appear as
ghost bands. Such a run is shown below for TiO2 (rutile).

The lowest six eigenvalues at GAMMA fall between about -1.30 and -1.28 Ry. They are ghost bands
derived from fictitious Ti-p states. The next four eigenvalues between -0.94 and -0.78 Ry correspond
to states derived from O 2s states, which are ok, since there are four O’s per unit cell, four states
are found.

The occurrence of such unphysical (indeed, unchemical!) ghostbands is the first warning that
something went wrong. A more definite warning comes upon running LAPW2, where the corre-
sponding charge densities are calculated. If the contribution to the charge density from the energy
derivative of the basis function [the Blm coefficient in equ. 2.4,2.7] is significant (i.e. much more
than 5 per cent) then a warning is issued in LAPW2.

In the present example it reads:

QTL-B VALUE .EQ. 40.35396 !!!!!!

This message is found in both the case.scf file and in case.output2 .

When such a message appears, one can also look at the partial charges (QTL), which are printed
under these conditions to OUTPUT2, and always appear in the files case.helpXX , etc., where the
last digit refers to the atomic index.

In the file below, note the E(1) energy parameter as well as the 6 ghost band energies around -1.29.

--------------- top of file:tio2.scf -----------------------------
ATOMIC SPHERE DEPENDENT PARAMETERS FOR ATOM Titanium
OVERALL ENERGY PARAMETER IS .2000
E(0)= .2000

---> E(1)= .2000
E(2)= .2000 E(BOTTOM)= -.140 E(TOP)= -200.000

ATOMIC SPHERE DEPENDENT PARAMETERS FOR ATOM Oxygen
OVERALL ENERGY PARAMETER IS .2000
E(0)= -.7100 E(BOTTOM)= -2.090 E(TOP)= .670

K= .00000 .00000 .00000 1
:RKM : MATRIX SIZE= 599 RKM= 6.99 WEIGHT= 8.00 PGR:

EIGENVALUES ARE:
-1.2970782 -1.2970782 -1.2948747 -1.2897193 -1.2897193
-1.2882306 -.9389111 -.8484857 -.7880729 -.7880729

-.0484830 -.0162982 .0121181 .0976534 .0976534
.1914068 .1914068 .2341991 .3286919 .3477629
.3477629 .3809219 .5143729 .5356211 .5550735
.5617155 .5617155 .7087550 .7197110 .8736991
.8736991 .9428865 .9533619 1.2224570 1.2224570

1.4285169
**
NUMBER OF K-POINTS: 1

:NOE : NUMBER OF ELECTRONS = 48.000
:FER : F E R M I - ENERGY = .53562

:POS01: AT.NR. -1 POSITION = .00000 .00000 .00000 MULTIPLICITY= 2
LMMAX=10
LM= 0 0 2 0 2 2 4 0 4 2 4 4 6 0 6 2 6 4 6 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0

:CHA01: TOTAL CHARGE INSIDE SPHERE 1 = 8.802166
:PCS01: PARTIAL CHARGES SPHERE = 1 S,P,D,F,PX,PY,PZ,D-Z2,D-X2Y2,D-XY,D-XZ,D-YZ
:QTL01: .127 6.080 2.518 .067 2.011 2.047 2.022 1.090 .760 .155 .480 .034

VXX VYY VZZ UP TO R
:VZZ01: -4.96856 8.48379 -3.51524 2.000

148 CHAPTER 12. TROUBLE SHOOTING

:POS02: AT.NR. -2 POSITION = .30500 .30500 .00000 MULTIPLICITY= 4
LMMAX=16
LM= 0 0 1 0 2 0 2 2 3 0 3 2 4 0 4 2 4 4 5 0 5 2 5 4 6 0 6 2 6 4 6 6 0 0

:CHA02: TOTAL CHARGE INSIDE SPHERE 2 = 5.486185
:PCS02: PARTIAL CHARGES SPHERE = 2 S,P,D,F,PX,PY,PZ,D-Z2,D-X2Y2,D-XY,D-XZ,D-YZ
:QTL02: 1.559 3.902 .022 .002 1.296 1.306 1.300 .014 .004 .000 .003 .001

VXX VYY VZZ UP TO R
:VZZ02: .25199 -.55091 .29892 1.600

:CHA : TOTAL CHARGE INSIDE CELL = 48.000000
:SUM : SUM OF EIGENVALUES = -15.810906

QTL-B VALUE .EQ. 40.35396 !!!!!!
NBAND in QTL-file: 24

----------------end of truncated file tio2.scf----------------------

Next we show tio2.output2 for the first of the ghost bands at -1.297 Ry. One sees that it corre-
sponds mainly to a p-like charge, which originates from the energy derivative part Q(UE) of the
Kohn-Sham orbital. Q(UE) contributes 40.1% compared with 8.5% from the main component Q(U).
Q(UE) greater than Q(U) is a good indication for a ghost band.

----------------part of file tio2.output2 --------------------------
QTL-B VALUE .EQ. 40.35396 !!!!!!

K-POINT: .0000 .0000 .0000 599 36 1
BAND # 1 E= -1.29708 WEIGHT= 2.0000000

L= 0 L= 1 PX: PY: PZ: L= 2 DZ2: DX2Y2: DXY: DXZ: DYZ: L= 3
QINSID: .0000 48.6035 35.0996 13.5039 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0030
Q(U) : .0000 8.4902 6.0125 2.4777 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0026
Q(UE) : .0000 40.1132 29.0871 11.0261 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0005

L= 0 L= 1 PX: PY: PZ: L= 2 DZ2: DX2Y2: DXY: DXZ: DYZ: L= 3
QINSID: .1294 .0707 .0000 .0055 .0653 .0088 .0038 .0049 .0000 .0000 .0000 .0022
Q(U) : .1279 .0627 .0000 .0052 .0575 .0087 .0038 .0049 .0000 .0000 .0000 .0020
Q(UE) : .0016 .0081 .0000 .0003 .0077 .0001 .0000 .0000 .0000 .0000 .0000 .0002
QOUT : 1.9265

----------------------bottom of truncated file ----------------------

Another file in which the same information can be found is tio2.help31 , since the ghost band is
caused by a bad choice for the Ti-p energy parameter:

----------------------Top of file tio2.help31 ---------------------
K-POINT: .0000 .0000 .0000 599 36 1
BAND # 1 E= -1.29708 WEIGHT= 2.0000000
L= 0 .00000 .00000 .00000 .00000 .00000 .00000
L= 1 48.60346 8.49022 40.11324 .00000 .00000 .00000

PX: 35.09960 6.01247 29.08712 .00000 .00000 .00000
PY: 13.50386 2.47774 11.02612 .00000 .00000 .00000
PZ: .00000 .00000 .00000 .00000 .00000 .00000

L= 2 .00000 .00000 .00000 .00000 .00000 .00000
DZ2: .00000 .00000 .00000 .00000 .00000 .00000

DX2Y2: .00000 .00000 .00000 .00000 .00000 .00000
DXY: .00000 .00000 .00000 .00000 .00000 .00000
DXZ: .00000 .00000 .00000 .00000 .00000 .00000
DYZ: .00000 .00000 .00000 .00000 .00000 .00000

L= 3 .00304 .00255 .00050 .00000 .00000 .00000
L= 4 .00000 .00000 .00000 .00000 .00000 .00000
L= 5 .00096 .00082 .00014 .00000 .00000 .00000
L= 6 .00000 .00000 .00000 .00000 .00000 .00000

-------------------bottom of truncated file--------------------------

Note again for L=1 the percentage of charge associated with the primary (APW) basis functions ul
(8.5%) versus that coming from the energy derivative component (40.1%).

If a ghost band appears, one should first analyze its origin as indicated above, then use appropriate
local orbitals to improve the calculation and get rid of these unphysical states.

Do not perform calculations with “ghost-bands”, even when the calculation converges.

Good luck !

13 References

Abt R., Ambrosch-Draxl C. and Knoll P. 1994 Physica B 194-196

Abt R. 1997 PhD Theses, Univ.Graz

Andersen O.K. 1973 Solid State Commun. 13, 133

— 1975 Phys. Rev. B 12, 3060

Ambrosch-Draxl C., Blaha P., and Schwarz K. 1991 Phys.Rev. B44, 5141

Ambrosch-Draxl C., Majewski J. A., Vogl P., and Leising G. 1995, PRB 51 9668

V.I. Anisimov, I.V. Solovyev, M.A. Korotin, M.T. Czyzyk, and G.A. Sawatzky, Phys. Rev. B 48,
16929 (1993).

V.I. Anisimov, J. Zaanen, and O.K. Andersen, Phys. Rev. B 44, 943 (1991)

Bader R. F. W. 2001: http://www.chemistry.mcmaster.ca/faculty/bader/aim/

Blaha P. and Schwarz K. 1983 Int. J. Quantum Chem. XXIII, 1535

Blaha P., Schwarz K., and Herzig P 1985 Phys. Rev. Lett. 54, 1192

Blaha P., Schwarz K., and Dederichs P 1988 Phys. Rev B 38, 9368

Blaha P., Schwarz K., Sorantin P.I. and Trickey S.B. 1990 Comp. Phys. Commun. 59, 399

Blaha P., Sorantin P.I., Schwarz K and Singh D. 1992 Phys. Rev. B 46, 1321

Blöchl P.E., Jepsen O. and Andersen O.K. 1994, Phys. Rev B 49, 16223

Boettger J.C. and Albers R.C. 1989 Phys. Rev. B 39, 3010

Boettger J.C. and Trickey S.B. 1984 Phys. Rev. B 29, 6425

Brooks M.S.S. 1985 Physica B 130, 6

Charpin, T. 2001. (see $WIENROOT/SRC/elast-UG.ps)

Czyzyk M.T. and G.A. Sawatzky, Phys. Rev. B 49, 14211 (1994).

Desclaux J.P. 1969 Comp. Phys. Commun. 1, 216; note that the actual code we use is an ap-
parently unpublished relativistic version of the non-relativistic code described in this paper.
Though this code is widely circulated, we have been unable to find a formal reference for it.

— 1975 Comp. Phys. Commun. 9, 31; this paper contains much of the Dirac-Fock treatment
used in Desclaux’s relativistic LSDA code.

O. Eriksson, B. Johansson, and M.S.S. Brooks, J. Phys. C 1, 4005 (1989)

149

150 CHAPTER 13. REFERENCES

Feldman J.L., Mehl M.J., and Krakauer H. 1987 Phys. Rev. B 35, 6395

Hébert-Souche C., Louf P.-H., Blaha P., M. Nelhiebel, Luitz J., Schattschneider P., Schwarz
K. and Jouffrey B.; The orientation dependent simulation of ELNES, Ultramicroscopy, 83, 9
(2000)

L.L. Hirst, Rev. Mod. Phys. 69, 607 (1997)

Hohenberg P. and Kohn W. 1964 Phys. Rev. 136, B864

“International Tables for X-Ray Crystallography“ 1964 Vol.1; The Kynoch Press, Birmingham
UK

Jansen H.J.F. and Freeman A.J. 1984 Phys. Rev. B 30, 561

— 1986 Phys. Rev. B 33, 8629

Koelling D.D. 1972 J. Phys. Chem. Solids 33, 1335

Koelling D.D. and Arbman G.O. 1975 J.Phys. F: Met. Phys. 5, 2041

Koelling D.D. and Harmon B.N. 1977 J. Phys. C: Sol. St. Phys. 10, 3107

Kohler B., Wilke S., Scheffler M., Kouba R. and Ambrosch-Draxl C. 1996
Comp.Phys.Commun. 94, 31

Kohn W. and Sham L.J. 1965 Phys. Rev. 140, A1133

Kokalj A. 1999 J.Mol.Graphics and Modelling 17, 176

Krimmel H.G., Ehmann J., Elsässer C., Fähnle M. and Soler J.M. 1994, Phys.Rev. B50, 8846

Kuneš J, Novák P., Schmid R., Blaha P. and Schwarz K. 2001, Phys. Rev. B64, 153102

Kara, M. and Kurki-Suonio K. 1981 Acta Cryst A37, 201

Liberman D., Waber J.T., and Cromer D.T. 1965, Phys. Rev. 137A, 27

A.I. Liechtenstein, V. I. Anisimov, J. Zaanen, Phys. Rev. B 52, R5467 (1995)

Luitz J., Maier M., Hébert C., Schattschneider P., Blaha P., Schwarz K., Jouffrey B. 2001 Eur.
Phys J. B 21, 363-367

MacDonald A. H., Pickett, W. E. and Koelling, D. D. 1980 J. Phys. C 13, 2675

Madsen G. K. H., Blaha P, Schwarz K, Sjöstedt E and Nordström L 2001, Phys. Rev. B64,
195134

Mattheiss L.F. and Hamann D.R. 1986 Phys. Rev. B 33, 823

Meyer-ter-Vehn J. and Zittel W. 1988 Phys. Rev. B37, 8674

Moruzzi V.L., Janak J.F., and Williams A.R. 1978 “Calculated Properties of Metals“ (Perga-
mon, NY)

Neckel A., Schwarz K., Eibler R. and Rastl P. 1975 Microchim.Acta, Suppl.6, 257

Nelhiebel M., Louf P. H., Schattschneider P., Blaha P., Schwarz K. and Jouffrey B.; Theory of
orientation sensitive near-edge fine structure core-level spectroscopy, Phys.Rev. B59, 12807
(1999)

Novak P. 1997 see $WIENROOT/SRC/novak lecture on spinorbit.ps

151

Novák P. , Boucher F., Gressier P., Blaha P. and Schwarz K. 2001 Phys. Rev. B 63, 235114

Novák P. 2001 see $WIENROOT/SRC/novak lecture on ldau.ps

Perdew J.P, Chevary J.A., Vosko S.H., Jackson K.A., Pederson M.R., Singh D.J., and Fiolhais
C. 1992 Phys.Rev.B46, 6671

Perdew J.P. and Wang Y. 1992, Phys.Rev. B45, 13244

Perdew J.P., Burke S. and Ernzerhof M. 1996, Phys.Rev.Let. 77, 3865

Perdew J.P., Kurth S., Zupan J. and Blaha P. 2000, Phys.Rev.Let. 82, 2544 (1999)

Pratt G.W. 1952 Phys. Rev. 88, 1217

Ray A.K. and Trickey S.B. 1981 Phys. Rev. B24, 1751; erratum 1983, Phys. Rev. B28, 7352

Schwarz K., Neckel A and Nordgren J, J.Phys.F:Metal Phys. 9, 2509 (1979)

Schwarz K., and Wimmer E, J.Phys.F:Metal Phys. 10, 1001 (1980)

Schwarz K. and Blaha P.: Lecture Notes in Chemistry 67, 139 (1996)

Schwarz K., P.Blaha and Madsen, G. K. H. 2001 Comp.Phys.Commun.

Singh D., Krakauer H., and Wang C.-S. 1986 Phys. Rev. B34, 8391

Singh, D. 1989 Phys. Rev. B40, 5428

Singh D. 1991, Phys.Rev. B43, 6388

Singh D. 1994, Plane waves, pseudopotentials and the LAPW method, Kluwer Academic

Sjöstedt E, Nordström L and Singh D. J. 2000 Solid State Commun. 114, 15

Sofo J and Fuhr J 2001: $WIENROOT/SRC/aim sofo notes.ps

Soler J.M. and Williams A.R. 1989, Phys.Rev. B40, 1560

Sorantin P.I., and Schwarz K.H. 1992, Inorg.Chem. 31, 567

Stahn J, Pietsch U, Blaha P and Schwarz K. 2001, Phys.Rev. B63, 165205

von Barth U. and Hedin L. 1972 J. Phys. C.: Sol. St. Phys. 5, 1629

Wei S.H., Krakauer H., and Weinert M. 1985 Phys. Rev. B 32, 7792

Weinert M. 1981 J. Math. Phys. 22, 2433

Weinert M., Wimmer E., and Freeman A.J. 1982 Phys. Rev. B26, 4571

Wimmer E., Krakauer H., Weinert M., and Freeman A.J. 1981 Phys. Rev. B24, 864

Yanchitsky B. and Timoshevskii T. 2001, Comp.Phys.Commun. 139, 235

Yu R., Singh D. and Krakauer H. 1991, Phys.Rev. B43, 6411

152 CHAPTER 13. REFERENCES

Part IV

Appendix

153

A Local rotation matrices

Local rotation matrices are used to rotate the global coordinate system (given by the definition of
the Bravais matrix) to a local coordinate system for each atomic site. They are used in the program
for two reasons:

I to minimize the number of LM combinations in the lattice harmonics expansion (of potential
and charge density according to equ. 2.10). For example for point group mm2 one needs for
L=1 just LM=1,0 if the coordinate system is chosen such that the z-axis coincides with the
2-fold rotation axis, while in an arbitrary coordinate system the three terms 1,0; 1,1 and -1,1
are needed (and so on for higher L).

I The interpretation e.g. of the partial charges requires a proper orientation of the coordinate
system. In the example given above, the p orbitals split into 2 irreducible representations, but
they can be attributed to pz and px, py only if the z-axis is the 2-fold rotation axis.

It is of course possible to perform calculations without “local rotation matrices“, but in such a case
the LM combinations given in Table 7.27 (and by SYMMETRY) may not be correct. (A program
SYM written by G. Vielsack determines the LM values for arbitrary orientations.)

Fortunately, the “local rotation matrices“ are usually fairly simple and are now automatically in-
serted into your case.struct file. Nevertheless we recommend to check them in order to be
sure.

The most common coordinate transformations are

I interchanging of two axes (e.g. x and z)
I rotation by 45◦ (e.g. in the xy-plane)
I rotation of z into the (111) direction

Inspection of the output of SYMMETRY tells you if the local rotation matrix is the unit matrix or it
gives you a clear indication how to find the proper matrix.

The local rotation matrix R , which transforms the global coordinates r to the rotated ones r′, is
defined by Rr = r′.

There are two simple ways to check the local rotation matrixes together with the selected LM com-
binations:

I charge density plots generated with LAPW5 must be continuous across the atomic sphere
boundary (especially valence or difference density plots are very sensitive, see 8.6)

I Perform a run of LAPW1 and LAPW2 using the GAMMA-point only (or a complete star of
another k point). In such a case, “wrong“ LM combinations must vanish. Note that the latter
is true only in this case. For a k mesh in the IBZ “wrong“ LM combinations do not vanish
and thus must be omitted!!

A first example for “local rotation matrices“ is given for the rutile TiO2, which has already been
described as an example in section 10.3. Also two other examples will be given (see below).

155

156 APPENDIX A. LOCAL ROTATION MATRICES

A.1 Rutile (TiO2)

Examine the output from symmetry. It should be obvious that you need local rotation matrices for
both, Ti and O:

....
Titanium operation # 1 1
Titanium operation # 2 -1
Titanium operation # 5 2 || z
Titanium operation # 6 m n z
Titanium operation # 12 m n 110
Titanium operation # 13 m n -110
Titanium operation # 18 2 || 110
Titanium operation # 19 2 || -110

pointgroup is mmm (neg. iatnr!!)
axes should be: m n z, m n y, m n x

This output tells you, that for Ti a mirror plan normal to z is present, but the mirror planes normal
to x and y are missing. Instead, they are normal to the (110) plane and thus you need to rotate x, y
by 45◦ around the z axis. (The required choice of the coordinate system for mmm symmetry is also
given in Table 7.27)

....
Oxygen operation # 1 1
Oxygen operation # 6 m n z
Oxygen operation # 13 m n -110
Oxygen operation # 18 2 || 110

pointgroup is mm2 (neg. iatnr!!)
axes should be: 2 || z, m n y

For O the 2-fold symmetry axes points into the (110) direction instead of z. The appropriate rotation
matrices for Ti and O are: −1√

2
1√
2

0
1√
2

1√
2

0
0 0 1

 0 −1√
2

1√
2

0 1√
2

1√
2

1 0 0

A.2 Si Γ-phonon

Si possesses a face-centered cubic structure with two equivalent atoms per unit cell, at (±0.125,
±0.125, ±0.125). The site symmetry is -43m. For the Γ-phnon the two atoms are displaced in
opposite direction along the (111) direction and cubic symmetry is lost. The output of SYMMETRY
gives the following information:

Si operation # 1 1
Si operation # 13 m n -110
Si operation # 16 m n -101
Si operation # 17 m n 0-11
Si operation # 24 3 || 111
Si operation # 38 3 || 111

pointgroup is 3m (neg. iatnr!!)
axis should be: 3 || z, m n y

lm: 0 0 1 0 2 0 3 0 3 3 4 0 4 3 5 0 5 3 6 0 6 3 6

A.3. TRIGONAL SELENIUM 157

Therefore the required local rotation matrix should rotate z into the (111) direction and thus the
matrix in the “struct“ file should be:

0.4082483 -.7071068 0.5773503
√

6
6 −

√
2

2

√
3

3

0.4082483 0.7071068 0.5773503
√

6
6

√
2

2

√
3

3

-.8164966 0.0000000 0.5773503 −2
√

6
6

√
2

2

√
3

3

A.3 Trigonal Selenium

Selenium possesses space group P3121 with the following struct file:

H LATTICE,NONEQUIV.ATOMS: 1
MODE OF CALC=RELA POINTGROUP:32

8.2500000 8.2500000 9.369000
ATOM= -1: X= .7746000 Y= .7746000 Z= 0.0000000

MULT= 3 ISPLIT= 8
ATOM= -1: X= .2254000 Y= .0000000 Z= 0.3333333
ATOM= -1: X= .0000000 Y= .2254000 Z= 0.6666667
Se NPT= 381 R0=.000100000 RMT=2.100000000 Z:34.0
LOCAL ROT.MATRIX: 0.0 0.5000000 0.8660254

0.0000000 -.8660254 0.5000000
1.0000000 0.0000000 0.0

6 IORD OF GROUP G0
......

The output of SYMMETRY reads:

Se operation # 1 1
Se operation # 9 2 $|$$|$ 110

pointgroup is 2 (neg. iatnr!!)
axis should be: 2 || z

lm: 0 0 1 0 2 0 2 2 -2 2 3 0 3 2 -3 2 4 0 4 2 -4 2

Point group 2 should have its 2-fold rotation axis along z, so the local rotation matrix can be con-
structed in two steps: firstly interchange x and z (that leads to z ‖ (011)) and secondly rotate from
(011) into (001) (see the struct file given above). Since this is a hexagonal lattice, SYMMETRY uses
the hexagonal axes, but the local rotation matrix must be given in cartesian coordinates.

158 APPENDIX A. LOCAL ROTATION MATRICES

B Periodic Table

159

160 APPENDIX B. PERIODIC TABLE

P
er

io
di

c
T

ab
le

 o
f

th
e

E
le

m
en

ts

1 H 1s

2 H
e

1s
2

3 L
i

H
e2

s

4 B
e

H
e2

s2

5 B
H

e2
s2 2p

6 C
H

e2
s2 2p

2

7 N
H

e2
s2 2p

3

8 O
H

e2
s2 2p

4

9 F
H

e2
s2 2p

5

10
N

e
H

e2
s2 2p

6

11
N

a
N

e3
s

12
M

g
N

e3
s2

13
A

l
N

e3
s2 3p

14
Si

N
e3

s2 3p
2

15
P

N
e3

s2 3p
3

16
S

N
e3

s2 3p
4

17
C

l
N

e3
s2 3p

5

18
A

r
N

e3
s2 3p

6

19
K

A
r4

s

20
C

a
A

r4
s2

21
Sc

A
r3

d1 4s
2

22
T

i
A

r3
d2 4s

2

23
V

A
r3

d3 4s
2

24
C

r
A

r3
d5 4s

1

25
M

n
A

r3
d5 4s

2

26
F

e
A

r3
d6 4s

2

27
C

o
A

r3
d7 4s

2

28
N

i
A

r3
d8 4s

2

29
C

u
A

r3
d10

4s
1

30
Z

n
A

r3
d10

4s
2

31
G

a
A

r3
d10

4s
2 4p

32
G

e
A

r3
d10

4s
2 4p

2

33
A

s
A

r3
d10

4s
2 4p

3

34
Se

A
r3

d10
4s

2 4p
4

35
B

r
A

r3
d10

4s
2 4p

5

36
K

r
A

r3
d10

4s
2 4p

6

37
R

b
K

r5
s

38
Sr

K
r5

s2

39
Y

K
r4

d1 5s
2

40
Z

r
K

r4
d2 5s

2

41
N

b
K

r4
d3 5s

2

42
M

o
K

r4
d5 5s

1

43
T

c
K

r4
d5 5s

2

44
R

u
K

r4
d6 5s

2

45
R

h
K

r4
d7 5s

2

46
P

d
K

r4
d8 5s

2

47
A

g
K

r4
d10

5s
1

48
C

d
K

r4
d10

5s
2

49
In

K
r4

d10
5s

2 5p

50
Sn

K
r4

d10
5s

2 5p
2

51
Sb

K
r4

d10
5s

2 5p
3

52
T

e
K

r3
d10

5s
2 5p

4

53
I

K
r4

d10
5s

2 5p
5

54
X

e
K

r4
d10

5s
2 5p

6

55
C

s
X

e6
s

56
B

a
X

e6
s2

57
-7

1

L
a-

L
u

72
H

f
X

e4
f14

5d
2 6s

2

73
T

a
X

e4
f14

5d
3 6s

2

74
W

X
e4

f14
5d

5 6s
1

75
R

e
X

e4
f14

5d
5 6s

2

76
O

s
X

e4
f14

5d
6 6s

2

77
Ir

X
e4

f14
5d

7 6s
2

78
P

t
X

e4
f14

5d
8 6s

2

79
A

u
X

e4
f14

5d
10

6s
1

80
H

g
X

e4
f14

5d
10

6s
2

81
T

l
X

e4
f14

5d
10

6s
2 6p

82
P

b
X

e4
f14

5d
10

6s
2 6p

2

83
B

i
X

e4
f14

5d
10

6s
2 6p

3

84
P

o
X

e4
f14

3d
10

6s
2 6p

4

85
A

t
X

e4
f14

5d
10

6s
2 6p

5

86
R

n
X

e4
f14

5d
10

6s
2 6p

6

87
F

r
R

n7
s

88
R

a
R

n7
s2

89
-1

03

A
c-

L
r

57
L

a
X

e5
d6

s2

58
C

e
X

e4
f2 6s

2

59
P

r
X

e4
f3 6s

2

60
N

d
X

e4
f4 6s

2

61
P

m
X

e4
f5 6s

2

62
Sm

X
e4

f6 6s
2

63
E

u
X

e4
f7 6s

2

64
G

d
X

e4
f7 5d

6s
2

65
T

b
X

e4
f9 6s

2

66
D

y
X

e4
f10

6s
2

67
H

o
X

e4
f11

6s
2

68
E

r
X

e4
f12

6s
2

69
T

m
X

e4
f13

6s
2

70
Y

b
X

e4
f14

6s
2

71
L

u
X

e4
f14

5d
6s

2

89
A

c
R

n6
d7

s2

90
T

h
R

n6
d2 7s

2

91
P

a
R

n5
f2 6d

1 7s
2

92
U

R
n5

f3 6d
1 7s

2

93
N

p
R

n5
f4 6d

1 7s
2

94
P

u
R

n5
f6 7s

2

95
A

m
R

n5
f7 7s

2

96
C

m
R

n5
f7 6d

7s
2

97
B

k
R

n5
f9 7s

2

98
C

f
R

n5
f10

7s
2

99
E

s
R

n5
f11

7s
2

10
0 F

m
R

n5
f12

7s
2

10
1 M

d
R

n5
f13

7s
2

10
2 N

o
R

n5
f14

7s
2

10
3 L

r
R

n5
f14

6d
7s

2

WIEN2k
ISBN 3-9501031-1-2

